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Noise is usually a source of disorder. However, the same noise can generate an ordered state in nonlinear
nonequilibrium systems. We demonstrates the existence of such surprising phenomena, noise-induced nonequi-
librium phase transitions, using a simple mathematical model and computer simulations. The critical properties
of these phase transitions appeared to be very similar to those of equilibrium phase transtions and compatible
with those of the dynamical Landau-Ginzburg model.

Noise is usually thought of as a phenomenon which perturbs
the observation and creates disorder. This idea is based mainly
on our day to day experience. Noise indeed disturbs equi-
librium systems and drives them into disordered states. The
effect of noise can, however, be quite different in nonlinear
nonequilibrium systems. Several situations have been docu-
mented in the literature, in which the noise actually partici-
pates in the creation of ordered states or is responsible for sur-
prising new phenomena through its interaction with the non-
linearities of the system [1–3].

Recently, a novel and quite spectacular phenomenon was
discovered in a specific model of a spatially distributed system
with multiplicative noise, white in space and time [4]. It was
found that the noise generates an ordered symmetry-breaking
state through a genuine second-order phase transition whereas
no such transition is observed in the absence of noise. In this
report, we briefly review our recent computer simulations of
such noise-induced nonequilibrium phase transitions.

Before going to a spatially extended system, let us look at a
simple zero-dimension model given by the following stochas-
tic differential equation:

_x = f(x) + g(x)� (1)

where x is a stochastic variable and � stands for Gaussian
white noise. A nonlinear function f(x) defines a determinis-
tic time evolution and the other nonlinear function g(x) intro-
duces a coupling with the noise. Using an appropriate choice
of f(x), the solution reaches to a steady state in which x fluc-
tuates around a mean value �x. We are interested in how �x and
its fluctuation �x depend on a control parameter �, which is
in our case the strength of noise defined by

h�(t)�(t0)i = �
2
�(t � t

0): (2)

Eq. (1) is interpreted according to the Stratonovitch inter-
pretation. [5] Hence, the probability density P (x; t) for the
variable x(t) obeys the following Fokker-Planck equation [6]:

@tP (x; t) = �@x[f(x)P (x; t)] +
�
2

2
@x fg(x)@x[g(x)P (x; t)]g

(3)

This problem can be solved analytically and �x obeys the fol-
lowing equation :

f(�x) � �
2

2
g(�x)g0(�x) = 0: (4)

where g0(x) stands for the derivative of g(x) with respect to
x. The steady states in the absence of noise are determined
by f(�x) = 0 which is different from Eq. (4). Therefore, the
steady state solutions of Eq. (1) could be quite different from
the dterministic systems. These changes in asymptotic behav-
ior of the system have been generally named noise-induced
transitions.

To illustrate this phenomenon, consider the case of a de-
terministically stable steady state at x = 0, e.g. f(x) =
�x(1+x2)2 perturbed by a multiplicativenoise g(x) = 1�x2.
Then, Eq. (4) can have multiple solutions. Using a linear sta-
bility analysis, we found that �x bifurcates at a critical strength
of noise �c = 2 in this example case. In another word, there is
only one solution �x = 0 for �2 < 2 but there are two solutions
for �2 > 2; one is positive and the other negetive. Choice
of either sign is equally probable but the system must choose
one solution. Therefore, the symmetry is broken. Note that if
g(x) = 1+x

2 is used, there is only one solution regardless the
strength of noise and thus no noise-induced transition occurs.

Next, we consider a d-dimension lattice with a scalar
stochastic variable xi at the ith site. The time evolution of xi
is described by a set of coupled stochastic equations
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_xi = f(xi) + g(xi)�i +
D

2d

X
j2N(i)

(xi � xj) (5)

whereD denotes a strength of spatial couplingand the summa-
tion is taken over the nearest neighbors. We focus on an order
parameter �x =

PN

i xi=N which represents the spatial order
of the system.

Unfortunately, an analytic solution to this problem is not
known. So, let us try to guess a solution. When the spatial
coupling is weak, the each site is independent and evolves in
the same way as the zero-dimensional model. Therefore, all
xi goes to a steady state �x = 0 below the critical point. Above
the critical point xi takes one of the bifurcated states. Since
the choice of the branches is at random, �x = 0 regardless the
strength of noise. On the other hand, in the strong coupling
limit, the coupling forces xi to take a similar value to those of
the nearest neighbors. Then, above the critical noise all sites
are expected to choose the same branch of bifurcated solutions.
If it happens, a spatially ordered state (�x 6= 0) is formed.

Surprisingly, such an intuitive argument appeared to be
wrong. Using the same f(x) and g(x) as in the zero dimen-
sion model, no ordered phase was found. We found that in
the strong coupling limit the mean value �x must obey a sim-
ilar condition to the zero dimension model:

_�x = f(�x) +
�
2

2
g(�x)g0(�x) (6)

However, the sign of the multiplicative noise term is opposite
to that of Eq. (4)! The condition of bifurcation in spatially
extended systems is precisely opposite to that in zero dimen-
sion model. From Eq. (6), we expect that a pure noise-induced
nonequilibrium phase transition occurs if g(x) = 1 + x

2 is
used for which no transition is found in the zero dimension
model.

In order to demonstrate the existence of such noise-induced
nonequilibrium phase transitions and to determine the critical
properties of such transitions, we performed extensive com-
puter simulations using 2D square lattices. The coupling con-
stant D = 20 is sufficiently large to cause the transitions.
Unlike equilibriumsystems, nonequilibriumsystems are time-
dependent. We must integrate a large set of coupled stochas-
tic differential equations for a sufficiently long period to ob-
tain accurate statistics, which demands very fast computers.
Cray C90 at the Alabama Supercomputer Center was used for
most simulations but a massively parallel computer Connec-
tion Machine model 5 was needed for the large lattices. The
detailed numerical algorithms we employed are explained in
Appendix.
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FIG. 1. Upper curve: Order parameter < x > versus intensity
of the noise for system size 32 � 32 (circles), 64 � 64 (diamonds)
and 128 � 128 (squares). Notice that although the general features
of mean field approximations agree with the simulation result, they
tend to overestimate the ordered region. Lower curve: Susceptibility,
� = L
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�
, as a function of �2 The peaks cleary show

the enhancement of fluctuations around the two critical points.

In figure 1, the order parameter and susceptibility as func-
tions of noise intensity are plotted for three difference lattice
sizes. An ordered phase first appears as the noise intensity in-
creases to �2 = 1:51 and then disappears again at �2 = 5:8
(reentrant transition). The finite size scaling method is used to
find the precise critical points. Susceptibility has clear peaks
at the critical points. Both spatial and temporal correlation
lengths diverge also at the critical points. All these critical
properties are very similar to those of equilibriumphase transi-
tions. Furthermore, the finite size scaling suggests that the crit-
ical properties of both first and reentrant transitions are com-
patible with those of the 2D Ising universality class.

Snapshots of the field values at several different noise in-
tensities are shown in figure 2. A weak random pattern (� =
0:50) is observed below the first critical point. It is clear that
the field simply fluctuates around �x = 0. At � = 1:72, many
islands with different sizes (fractal structure) appear, indicat-
ing that the system is in the critical region. Betnween two tran-
sition points, the whole area is covered by positive values ex-
cept for several small spots(� = 4:00). This is an ordered
phase. At � = 5:80, islands with diferent scales again ap-
pear and the ordered phase begins to be destroyed. Finally, at
� = 8:00, the field values change from large negative values to
positive values and they are almost randomly distributed. Al-
though shot-range ordered is still present, the long-range spa-
tial order is completely destroyed.
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FIG. 2. Snapshots of the field values on a 128�128 lattice. Green
to blue color corresonds to negative values and red to yellow posi-
tive values. Field values are almost random below the first critical
point and above the second critical point (� = 0:50 and � = 8:00.
Many islands with different sizes are observed at the critical points
(� = 1:72 and � = 5:80). Between the critical points, an ordered
phase is obtained (� = 4:00)

In figure 3, we illustrate the growth of ordered phase. Dark
areas correspond to negative values of the field xi and light ar-
eas to positive values. Initially, the system was in a random
configuration. Many small ordered regions are quickly devel-
oped and as time evolve the ordered areas grow. After a while,
two large ordered domains; one with positive values and the
other with the opposite sign, are formed. Eventually, one of
the domains will grow and the other will disappear. When the
syswtem reaches a steady state, the whole area is covered by a
single domain.
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FIG. 3. Time evolution of domains starting in a completely ran-
dom initial configuration toward an ordered phase for the spatially ex-
tended model on a square lattice, (L = 128, �2 = 4:00 andD = 20).
Dark areas correspond to negative values of the field xi and light ar-
eas to positive values. Notice the initial developmentof small ordered
regions which subsequently grow.

In conclusion, we have confirmed the existence of a pure
noise-induced nonequilibrium phase transition using a simple
model. We have obtained evidence that the critical properties
of the transition are compatible with those of Ising universality
class. It is clear that phase transition of other kinds, e.g., first
order transition and transitions that break both temporal and
spatial symmetries simultaneously are possible through simi-
lar multiplicative noise.

This work is supported by NATO through Grant
CRG950055.

APPENDIX: COMPUTER SIMULATIONS

A Monte Carlo simulation of the stochastic process (5) was
performed for 2-dimensional square lattices of various sizes up
toL = 128 with periodic boundary conditions. The stochastic
differential equation for the variable at the i-th site, xi, is given
by

dxi

dt
= Fi(x) +Gi(x)�i(t); i = 1; : : : ; N = L

2 (A1)
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where x = (x1; : : : ; xN) and

Fi(x) = f(xi) �
D

4

X
j2n(i)

(xi � xj) (A2)

Gi(x) = g(xi) (A3)

This equation was integrated using two different algorithms,
the Milshtein and the Heun methods [7,8].

The Milshtein method allows to advance forward in time by
means of the recursion relations:

xi(t+ �t) =

�
Fi(x(t)) +

�
2

2
Gi(x(t))

dGi(x(t)

dxi

�
�t (A4)

+Gi(x(t))
p
�2�t�i(t) (A5)

where �i(t) are independent Gaussian random variables of
zero mean and variance equal to 1 and the second term is in-
cluded because (A1) is interpreted in the Stratonovich sense.
The order of numerical error in the Milshtein method is �t.
Therefore, a small �t (e.g., �t = 1�10�4 for �2 = 1) must be
used, while its computational effort per time step is relatively
small. For large �, where fluctuations are rapid and large, a
longer integration period and a smaller �t is necessary. The
Milshtein method quickly becomes impractical.

The Heun method is based on the 2nd-order Runge-Kutta
method and integrates the stochastic equation by a recursive
equation

xi(t+ �t) = xi(t) +
�t

2
[Fi(x(t)) + Fi(y(t))] (A6)

+

p
�2�t

2
�i(t) [Gi(x(t)) +Gi(y(t))] (A7)

where

yi(t) = xi(t) + f(xi(t))�t + g(xi(t))�i(t)
p
�2�t (A8)

This method allows larger �t than the Milshtein method with-
out significant increase in computational effort per step. We
used this method for �2 > 2.

The time step �t has been chosen by a stability condition
and also such that averaged magnitudes do not depend on �t

within statistical errors. For D = 20, for example, the neces-
sary values for �t vary between �t = 5�10�4 for �2 = 1 and
�t = 1 � 10�5 for �2 = 15. The Gaussian random numbers
necessary for the simulations were generated either by using
the Box-Muller-Wiener algorithm or a very fast numerical in-
version method [9]. The time evolution of the average value
is carefully monitored until the stationary state is reached.

The order parameter is computed by

hmi =
**

j 1

L2

NX
i=1

xi j
+

time

+
ensemble

(A9)

where h: : :itime and h: : :iensemble indicate time average and
ensemble average, respectively. The averaging time T was
chosen to be sufficiently longer than the correlation time, for

example, T � 2�104 (108 steps) near the critical points. The
ensemble average was taken over at least 10 independent sys-
tems. Similarly, the susceptibility is evaluated as

� =
L
2

�2

** 
1

L2

NX
i=1

xi

!2

� hmi2
+

time

+
ensemble

:

(A10)

Simulation of large systems (128 � 128) was too long for
Cray C90 despite the code is mostly vectorized. Therefore, we
used a massively parallel computer, the connection machine
model 5E with 256 processors which appeared to be about ten
times faster than Cray C90 for this particular application with
the same programs.
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