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Bistability generated via a pure noise-induced phase transition is reexamined from the view of bifurcations
in macroscopic cumulant dynamics. It allows an analytical study of the phase diagram in more general cases
than previous methods. In addition, using this approach we investigate spatially extended systems with two
degrees of freedom per site. For this system, the analytic solution of the stationary Fokker-Planck equation is
not available and a standard mean field approach cannot be used to find noise-induced phase transitions. A
different approach based on cumulant dynamics predicts a noise-induced phase transition through a Hopf
bifurcation leading to a macroscopic limit cycle motion, which is confirmed by numerical simulation.
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I. INTRODUCTION

The interplay between nonlinear dynamics and noise of-
ten generates interesting and counterintuitive phenomena.
Popular examples are stochastic resonance[1], coherence
resonance[2], and noise-induced phase transitions[3–5]. In
the latter example noise creates an ordered phase which does
not exist in the absence of noise. Unlike noise-induced tran-
sitions in systems with few degrees of freedom, the noise-
induced phase transition breaks ergodicity and has the char-
acteristics of a genuine phase transition. In previous studies,
many variations of pure noise-induced phase transitions were
introduced[5]. Spatial patterns can be induced via the pure
noise-induced phase transition[6–9]. The noise-induced first
order phase transition was also shown to be possible
[10–12]. The systems with colored noise were investigated
by various groups[12–15]. Furthermore, the bistability cre-
ated by the noise-induced phase transition exhibits stochastic
resonance when a time-periodic perturbation is added[16]
and it can lead to propagation of harmonic signals[17]. The
idea of noise-induced phase transition was also used in
coupled Brownian motors[18,19].

Most previous investigations take a mean field approach
and use the self-consistent condition[5,20]

kxl =E
−`

`

xPstsx;kxlddx s1d

to determine the meankxl and also bifurcation points. This
method yields an exact solution for the phase boundaries
within the mean field limitf23g. However, to solve Eq.s1d
one needs to know the analytic solution of the stationary

Fokker-Planck equationPstsx; kxld, which is in general not
available. Furthermore, if the system does not have a station-
ary statesi.e., kxl is time dependentd, we must use a time-
dependent self-consistent condition which is prohibitively
more difficult. For certain types of spatially extended sto-
chastic problems, there is an approximate method which re-
places stochastic dynamics with effective deterministic dy-
namics f21g. However, the extent of applicability to other
models is not known. A general and systematic method is
highly desired.

In this paper we present a systematic method to investi-
gate noise-induced phase transitions. While it does not pro-
vide exact solutions, the method does not require an analyti-
cal expression of the stationary state probability distribution
and can be applied to general cases including time-dependent
problems. In the following section, we investigate a model
system with a single variable introduced by Van den Broeck
et al. [3] for which an exact solution is known. The present
method predicts a pitchfork bifurcation to an ordered state as
the noise intensity increases and also the reentrant transition
to a disordered phase at a higher noise intensity. This behav-
ior is qualitatively in a good agreement with the exact mean
field results.

Then, we apply the same method to a model with two
variables. The model is expected to undergo a noise-induced
phase transition to a time-dependent ordered phase for which
the time-independent self-consistent approach is not practi-
cal. The present method predicts a Hopf bifurcation to a
macroscopic limit cycle phase from a disordered state as the
noise intensity increases and shows also a reentrant transi-
tion. We also demonstrate that the present method can pro-
vide other information such as a period and amplitude of the
oscillation.

II. NOISE-INDUCED PITCHFORK BIFURCATION

In this section, we consider the following stochastic sys-
tem of N globally coupled microscopic variableshxij:
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ẋi = fsxid −
D

N
o
j=1

N

sxi − xjd + gsxidjistd, s2d

whereD is a coupling strength andjistd is a Gaussian white
noise, defined by

kjistdl = 0, kjistdj jst8dl = s2di jdst − t8d. s3d

Equations2d is interpreted in the Stratonovich sense.
With certain nonlinear functionsfsxd and gsxd, Eq. (2)

exhibits a phase transition from a disordered phaseskxl=0d
to an ordered phaseskxlÞ0d as the noise intensitys2 in-
creases. At larger noise intensities the system undergoes a
reentrant transition to another disordered phaseskxl=0d
[3,4]. Since the ordered phase does not exist in the absence
of noise, the phenomena is calledpure noise-induced phase
transition. Van den Broecket al. [3] originally investigated it
using the following nonlinear functions:

fsxd = − xs1 + x2d2, gsxd = 1 +x2 s4d

because a stationary state solution to the corresponding
Fokker-Planck equation can be obtained analytically, which
allowed them to find the exact phase boundary in the limit of
N→` with the self-consistent equations1d.

In the following, we present a method which allows us to
investigate more general cases approximately but without an
analytical probability distribution. We apply the method to
this model(4) and compare the results with the exact solu-
tion and also with numerical simulations.

A. Moment dynamics

AssumingN→`, we write Eq.(2) in a mean field form:

ẋ = fsxd − Dsx − kxld + gsxdjstd. s5d

Taking the mean of Eq.s5d under the Stratonovich interpre-
tation, the dynamics ofkxl is given by

kẋl = kfsxdl +
s2

2
kg8sxdgsxdl. s6d

Expandingfsxd and gsxd in Taylor’s series aroundkxl, Eq.
s6d forms an infinite set of simultaneous ordinary differential
equations:

kẋl = o
n=0

mn

n!
H f sndskxld +

s2

2
fg8skxldgskxldgsndJ s7d

ṁn = − Dnmn + o
m=0

nmn+m−1

m!
H f smdskxld

+
s2

2
fg8skxldgskxldgsmdJ

+ o
m=0

nsn − 1dmn+m−2

m!

s2

2
fg2skxldgsmd. s8d

Here, f snd is thenth order derivative andmn=ksx−kxldnl the
nth central moment with, by definition,m0=1 andm1=0.

Some previous studies[4,22] have considered only the
0th order term, thereby neglecting the fluctuationsx−kxl,
and worked with the equation

kẋl = fskxld +
s2

2
g8skxldgskxld. s9d

Since this equation does not depend on the coupling constant
D, it cannot explain the reentrant transition. In fact, Eq.s9d is
exact whenD→` under which condition no reentrant tran-
sition takes placef3,4g. Even with higher order terms, Eq.s7d
still does not explicitly depend on the coupling constant. The
effect of finite coupling strength arises only through the dy-
namics of the second and higher order moments as Eq.s8d
indicates.

In order to see how the higher order terms create the
reentrant transition, we investigate the previous model Eq.
(4). Here we show the equations of motion only forkxl and
m2:

kẋl = ss2 − 2dm3 − m5 + fs2 − 1 + 3ss2 − 2dm2 − 5m4gkxl

− 10m3kxl2 + ss2 − 2 − 10m2dkxl3 − kxl5, s10d

ṁ2 = s2 + 2f2s2 − s1 + Ddgm2 + s3s2 − 4dm4 − 2m6 + f2s5s2

− 6dm3 − 10m5gkxl + f2s2 + 12ss2 − 1dm2 − 20m4gkxl2

− 20m3kxl3 + ss2 − 10m2dkxl4. s11d

Noting fs−xd=−fsxd and gs−xd=gsxd, the system(5) is
invariant under the variable transformationx→−x. Due to
this symmetry the odd moments must be zero whenkxl=0.
Then, we find a fixed point atkxl* =0 andm2n+1

* =0. The even
moments at this fixed point are not zero and must be deter-
mined by setting the right-hand side of Eq.(8) to zero. For
example, Eq.(11) provides the following equation:

s2 + 2f2s2 − s1 + Ddgm2
* + s3s2 − 4dm4

* − 2m6
* = 0. s12d

A linear stability analysis of Eq.(10) yields the bifurca-
tion condition for a pitchfork bifurcation:

sc
2 − 1 + 3ssc

2 − 2dm2
* − 5m4

* = 0, s13d

wheresc is a critical noise intensity. Even without the exact
knowledge of the higher moments useful information can be
derived from Eq. s13d. Since bothm2 and m4 are non-
negative, the left-hand side is alway negative fors2,1. In
this regime the fixed pointkxl* =0 is stable regardless of the
magnitude ofD. For 1,s2,2, only the 0th moment term is
positive but the other terms are negative and support stabil-
ity. The bifurcation is possible in this range of noise intensity
only when the moments are sufficiently small. Since increas-
ing the coupling strength reduces fluctuation, the bifurcation
takes place above a certain magnitude ofD.

Interestingly, the role of the second moment term changes
at s2=2. At higher values it supports instability of the fixed
point. The fourth moment term is always negative and sup-
ports stability. Whenm4 grows faster thanm2 with increasing
s2, it eventually dominates and the left-hand side of Eq.(13)
becomes negative again. Then, the system reenters the disor-

KAWAI et al. PHYSICAL REVIEW E 69, 051104(2004)

051104-2



dered phase. In order to determine the critical noise intensity
sc from Eq. (13), one needs to know stationary even mo-
mentsm2

* andm4
* , which are to be determined by Eq.(12). In

turn, it requiresm6
* . At the end, all even moments must be

simultaneously solved, which is practically impossible for
general cases. An approximation is necessary.

B. Gaussian approximation

When fsxd or gsxd is nonlinear, the stochastic dynamics
(2) is not a Gaussian process and in general we cannot solve
the system of equations(7) and (8) exactly. For an approxi-
mate solution it is convenient to assume a probability distri-
bution Psx; kxld for which the cumulants above a certain or-
der are negligible. We chose here the simplest example
where the cumulants above the second order are set to zero
(Gaussian approximation). In general, this approximation is
quantitatively not justified but reproduces the main features
of the noise-induced phase transition, especially the reentrant
transition into the disordered phase.

In the Gaussian approximation all odd moments vanish.
The even moments can be expressed by the second moment
m2. For example,

m4 = 3m2
2 and m6 = 15m2

3. s14d

Applying these relations, Eq.s12d becomes

s2 + 2f2s2 − s1 + Ddgm2 + 3s3s2 − 4dsm2
*d2 − 30sm2

*d3 = 0

s15d

which determinesm2
* as a function ofs2. In turn, we can

determine higher order even moments via the Gaussian ap-
proximation. Figure 1 plotsm2

* and m4
* obtained by the

Gaussian approximation and also the results of numerical
simulation for comparison. Up tos2=2, the Gaussian ap-
proximation is in a good agreement with the simulation. At
higher noise intensities, non-Gaussian behavior becomes

large and the Gaussian approximation significantly overesti-
mates the fluctuation.

Once we find all stationary moments, we can quantita-
tively evaluate the stability condition(13) for kxl. With the
Gaussian approximation(14), the bifurcation condition(13)
becomes

sc
2 − 1 + 3ssc

2 − 2dm2
* − 15sm2

*d2 = 0. s16d

Here,m2
* must also satisfy Eq.s15d with noise intensitysc. In

other words, Eqs.s15d and s16d must be solved simulta-
neously forsc andm2

* .
Figure 2 shows the results and compares them with the

exact solution obtained from Eq.(1). Although there is a
clear quantitative discrepancy between the approximation
and the exact solution the main features, namely the entrant
transition into the ordered phase at medium noise intensities
and the reentrant into the disordered phase at high intensities

FIG. 2. The phase diagram. The ordered phaseskxlÞ0d is above
the lines and the disordered phaseskxl=0d below them. The dashed
line is the exact solution in the mean field limit obtained by Eq.(1),
the solid line is the Gaussian approximation.

FIG. 1. Stationary momentsm2
* (left panel) and m4

* (right panel) obtained by Gaussian approximation(solid lines) and numerical
simulation (dashed lines). The coupling strengthD=10 is used. The Gaussian approximation appears in a good agreement with the
simulation belows2=2. However, it overestimates both second and fourth order moments aboves2=2. This rapid growth causes reentrant
transition at a smaller noise intensity than the exact solution. The grey region shows the location of the ordered phase.
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is reproduced. As in the exact solution a certain minimim
coupling strength is required for the transition to take place.

We can also evaluate the meankxl as a function ofs2

from Eqs.(10), (14), and(15). The result is plotted in Fig. 3
along with the results of simulation. The agreement near the
first transition point is quite good. However, the Gaussian
approximation predicts the reentrant transition much earlier
than the simulation as mentioned earlier.

We noticed that the present results resemble the phase
boundary for the two-dimensional system with a local cou-
pling examined in Ref.[4] surprisingly well. This coinci-
dence is partly due to the fact that the locally coupled system
has much larger fluctuation than the globally coupled system,
which induces the reentrant transition at a smaller noise in-
tensity. Since the Gaussian approximation overestimates the
fluctuation, it shares some similarity with locally coupled
systems.

III. NOISE-INDUCED LIMIT CYCLE

In this section we investigate a model with two variables
at each site. Multivariate stochastic systems are mathemati-
cally quite difficult. Even if the system has a stationary state,
it is usually hard to find an analytical expression of its prob-
ability distribution. It will be even more difficult if the sys-
tem does not have a stationary state and the probability dis-
tribution is explicitly time dependent. The lack of an
analytical expression of the probability distribution makes
the standard method based on the self-consistent equation(1)
futile. Direct numerical simulation of multivariate Langevin
equations demands more computational power than the
single variable cases. However, we expect that the Gaussian
approximation provides a degree of accuracy similar to that
in the single variable case without increasing mathematical
difficulty.

We use the following simple model that keeps a close
connection to the previous model:

ẋi = fsxid −
D

N
o

j

sxi − xjd + gsxidjistd − yi , s17d

ẏi = kxi s18d

with fsxd and gsxd defined by Eq.s4d as before. Again, we
expand the dynamical equations in terms of the central mo-
ments:

kẋl = o
n=0

mn,0

n!
H f sndskxld +

s2

2
fg8skxldgskxldgsndJ − kyl,

s19d

kẏl = kkxl, s20d

ṁn,m = − nDmn,m − nmn−1,m+1 + mkmn+1,m−1 + mkmn,m−1kxl

− nmn−1,mkyl + o
,=0

nmn+,−1,m

,!
H f s,dskxld

+
s2

2
fg8skxldgskxldgs,dJ

+ o
,=0

nsn − 1dmn+,−2,m

,!

s2

2
fg2skxldgs,d, s21d

where n+mù2 and mn,m=ksx−kxldnsy−kyldml with m0,0=1
andm1,0=m0,1=0.

For the present model(4), Eqs.(19) and (21) are explic-
itly written as

kẋl = ss2 − 2dm3,0− m5,0+ fs2 − 1 + 3ss2 − 2dm2,0− 5m4,0gkxl

− 10m3,0kxl2 + ss2 − 2 − 10m2,0dkxl3 − kxl5 − kyl, s22d

ṁ2,0= s2 + 2f2s2 − s1 + Ddgm2,0− 2m1,1+ s3s2 − 4dm4,0

− 2m6,0+ 2fs5s2 − 6dm3,0− 5m5,0gkxl + 2fs2 + 6ss2

− 1dm2,0− 10m4,0gkxl2 − 20m3,0kxl3 + ss2 − 10m2dkxl4,

s23d

ṁ0,2= 2km1,1, s24d

ṁ1,1= ss2 − D − 1dm1,1+ km2,0− m0,2+ ss2 − 2dm3,1− m5,1

+ f3ss2 − 2dm2,1− 5m4,1gkxl + f3ss2 − 2dm1,1− 10m3,1g

3kxl2 − 10m2,1kxl3 − 5m1,1kxl4. s25d

Here only the lowest order moments are shown.
Taking into account the symmetry of the model, there is at

least one fixed point atkxl* =kyl* =0 and mn,2m+1
* =m2m+1,n

*

=0. Stationary even moments are determined by an infinite
set of simultaneous equations. Here we show three condi-
tions derived from Eqs.(23)–(25):

s2 + 2f2s2 − s1 + Ddgm2,0
* + s3s2 − 4dm4,0

* − 2m6,0
* = 0,

s26d

km2,0
* − m0,2

* + ss2 − 2dm3,1
* − m5,1

* = 0, s27d

andm1,1
* =0.

FIG. 3. The meankxl by the Gaussian approximation(solid line)
and by numerical simulation(dashed line). The coupling strength
D=10 is used.
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Now, we apply the Gaussian approximation to this sys-
tem. For any two variable Gaussian system, all odd moments
are zero(mm,n=0 for m+n=odd integer) and any even oder
moment can be expressed as a product of the second order
moments,m2,0, m0,2, andm1,1. For the present model we need
only the following relations:

m3,1= 3m2,0m1,1, m4,0= 3m2,0
2 ,

m5,1= 15m2,0
2 m1,1, m6,0= 15m2,0

3 . s28d

Under the Gaussian approximation, the stationary even mo-
mentsm2,0

* andm0,2
* can be determined by Eqs.(26) and(27).

The equations of motion(22)–(25) become a five-

dimensional dynamical system ofjW =skxl kyl m2,0 m0,2

m1,1d. A standard linear stability analysis yields a Jacobian:

1
l1 − 1 0 0 0

k 0 0 0 0

0 0 l2 0 0

0 0 0 0 2k

0 0 k − 1 l3

2 s29d

where

l1 = s2 − 1 + 3ss2 − 2dm2,0
* − 15sm2,0

* d2, s30d

l2 = 2s2s2 − 1 −Dd + 6s2s2 − 4dm2,0
* − 90sm2.,0

* d2, s31d

l3 = s2 − 1 −D + 3ss2 − 2dm2,0
* − 15sm*2,0d2. s32d

The Jacobians29d is in a block diagonal form and the stabil-
ity of kxl andkyl are separated from that of the higher order
moments, which makes analytical investigation easier. The
two-by-two block at the top-left corner determines the stabil-
ity of kxl* =kyl* =0 and its eigenvalues are given by

l =
1

2
sl1 ± Îl1

2 − 4kd , s33d

which indicates that the fixed point becomes unstable atl1
=0. This bifurcation condition is identical to Eq.s16d and
therefore the two-variable model also undergoes reentrant
transition because of the same reason as in the single variable
model. Figure 4 compares the phase boundary obtained by
the Gaussian approximation and the simulation results.
Quantitatively, the disagreement is rather large. However,
the qualitative features are correctly captured.

Since the eigenvalue has an imaginary part at the bifurca-
tion point, it is a Hopf bifurcation and a stable limit cycle is
formed above the critical noise intensity, which is confirmed
by numerical simulation. Figure 5 shows snapshots of an
ensemble of particles. One observes a quite regular limit
cycle motion of the mean, even though the system is rather
small sN=625d and the individual units are spread widely
around the mean. The width of the cloud inx direction is
much larger than the one iny direction due to smallk, which
is in a good agreement with Eq.(27). Analogous to the

FIG. 4. Phase diagram for the two variable case. In the region
above the lines we observe oscillations of the mean, below it we do
not. The line labeled theory is the analytic solution in the Gaussian
approximation, the line labeled simulation is the numerically ob-
tained result for the Langevin dynamics of Eqs.(17) and (18) for
N=625 systems withk=0.1.

FIG. 5. Snapshots of an ensemble of 625 elements in phase
space. The single dots denote the individual elements. The solid
circle shows the mean and the line depicts the trajectory of the
mean. The time series goes from left to right and from the top to the
bottom. Parameter valuesD=20, s=2, andk=0.1 are used.
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single-variable case we will call the oscillating phase the
ordered phase and the nonoscillating phase the disordered
phase.

From the imaginary part of the eigenvalue the period of
oscillation near the bifurcation point is approximately given
by T=2p /Îk. Since it does not depend on any moment, this
period is valid even without the Gaussian approximation.
Indeed it perfectly agrees with numerical simulation as
shown in Fig. 6.

If the time evolution of the means is needed, Langevin
equation or time-dependent Fokker-Planck equation are usu-
ally solved numerically. Numerical simulation of coupled
Langevin equations is computationally rather time consum-
ing especially near the bifurcation point due to the finite size
effect. One needs a large number of samplings to obtain rea-
sonable statistics. Furthermore, ensemble averaging is cum-
bersome since each realization oscillates in a different phase.
Numerical integration of time-dependent Fokker-Planck
equations does not have a problem of statistical error but
often suffers from numerical instability. Special care may be
needed. While it is difficult to solve moment dynamics(22),
(20), and(23)–(25) analytically even with Gaussian approxi-
mation, it is much easier to solve them numerically com-
pared to the Langevin or Fokker-Planck equation. Since the
moment dynamics is deterministic, there is no statistical er-
ror. The upper panel of Fig. 7 shows the time evolution of
kxl, kyl, and m2,0 with the Gaussian approximation. Other
moments,m0,2 and m1,1 (not shown) converge to stationary
values. The lower panel shows the results of numerical simu-
lation. Only one realization with 10 000 particles is shown.
Although the amplitude and period are overestimated by the
Gaussian approximation, all qualitative features are captured.

Finally, we discuss a special case wherek!1 (relaxation
oscillation limit). In this limit, Eq. (20) indicateskyl varies
very slowly. Furthermore, from Eq.(27) the fluctuation of
the variabley is negligibly small, suggesting that all particles
experience the same value ofy. Sincex dynamics is much
faster thany, a “stationary” probability distribution is formed

FIG. 8. A noise-induced relaxation oscillation. Dashed line: a
nullcline determined by Eq.(35). Solid line: a limit cycle trajectory
obtained by numerical simulation. Parameter values areD=10, s2

=3, and k=0.01. The simulation result follows the theoretical
nullcline and jumps to another branch of the nullcline.

FIG. 6. Power spectrum of a limit cycle motion obtained by
numerical simulation(solid line) and the period obtained from the
linear stability analysis(dashed line). Parameter values areD=10,
s2=1.5, andk=0.1. The agreement is perfect.

FIG. 7. Time evolution ofkxl (solid line) and kyl (dashed line)
obtained by numerically solving Eqs.(20) and (22)–(25) in the
Gaussian approximation(upper panel) and Langevin equations(17)
and (18) (lower panel). For the Gaussian approximationm2,0 (thin
line) is also shown. ParametersD=10, s2=2, andk=0.1 are used.
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beforey varies. In another word, the variabley in Eq. (19) is
just a parameter for the dynamics ofx. In this case, we can
investigate the Hopf bifurcation using the self-consistent
equation(1). Following Ref.[3], the stationary distribution is
given by

Pstsx;kxl,kyld =
1

Z
expF 2

s2E
0

x

dx8H− x8 −
s2

2

2x8

1 + x82

−
Dsx8 − kxld + kyl

s1 + x82d2 JG , s34d

where Z is a normalization constant. The self-consistent
equations1d yields a relation betweenkxl and kyl:

kxl =
1

Z
E

−`

+`

dx
x

1 + x2expF−
x2

s2 +
D

s2

1

1 + x2

+
Dkxl − kyl

s2 H x

1 + x2 + arctanxJG s35d

which corresponds to a nullcline of the relaxation oscillation.
Figure 8 plots the nullcline and an actual trajectory from
numerical simulation. The trajectory follows one branch of
the nullcline and jumps to the other branch analogous to the
deterministic relaxation oscillation. This nullcline is exact.
However, its derivation requires an analytical expression of
the probability distribution and may not be applicable to
other cases. An alternative method such as the Gaussian ap-
proximation is useful for general cases where the analytical
distribution is not available.

IV. CONCLUSIONS

We have described a general theoretical method useful for
the investigation of nonlinear stochastic systems exhibiting

noise-induced phase transitions. It is based on the dynamical
equations for the central moments. In general the exact solu-
tion involves the solution of the infinite dimensional set of
ordinary differential equations for these moments. However,
even without solving this system useful qualitative informa-
tion can be gathered from the equations. Furthermore, quan-
titatively reasonable solutions can be obtained by neglecting
the cumulants of the distributions above a certain order and
then solving the remaining finite set of equations.

Using this method we investigated two systems. One ex-
hibits a noise induced pitchfork bifurcation, the other one a
Hopf bifurcation. In the latter case, the macroscopic quanti-
ties oscillate in time when the system is in an ordered phase.
This oscillation is purely induced by noise via spontaneous
symmetry breaking. The macroscopic oscillation suggests a
strong synchronization of microscopic degrees of freedom
despite the presence of noise. Actually, it is the noise that
generates the macroscopic order. On the other hand a strong
noise destroys the order again. The reentrance into the disor-
dered phase is due to the fourth moment, that grows faster
with noise intensity than the second moment.

In the Gaussian approximation we have reproduced the
basic features of the noise-induced phase transition, namely
the existence of a critical coupling strength and the disorder-
order-disorder transition.
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