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Microscopic Analysis of a Thermal Brownian Motor
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We study a genuine Brownian motor by hard disk molecular dynamics and calculate analytically its
properties, including its drift speed and thermal conductivity, from microscopic theory.
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FIG. 1. (a) Schematic representation of the Smoluchowski-
Feynman ratchet. (b) Similar construction without a pawl and a
spring. (c) Two-dimensional analog referred to as the AB
motor. The motor is constrained to move along the horizontal
x direction (without rotation or vertical displacement). The host
gas consists of hard disks whose centers collide elastically with
the engine parts. The shape of the arrow is determined by the
apex angle 2�0 and the vertical cross section S. Periodic
boundary conditions are used in the computer simulations.
(d) A symmetric construction referred to as the AA motor.
It is (believed to be) impossible to systematically rec-
tify thermal fluctuations in a system at equilibrium. Such
a perpetuum mobile of the second kind, also referred to
as a Maxwell demon [1], would violate the second law of
thermodynamics and would, from the point of view of
statistical mechanics, be in contradiction with the prop-
erty of detailed balance. Yet, it may require quite subtle
arguments to explain in detail on specific models why
rectification fails. Apart from the academic and pedagog-
ical interest of the question, the study of small scale
systems is motivated by rapidly increasing capabilities
in nanotechnology and by the huge interest in small scale
biological systems. Furthermore, when operating under
nonequilibrium conditions, as is the case in living organ-
isms, the rectification of thermal fluctuations becomes
possible. This mechanism, also referred to as a
Brownian motor [2], could furnish the engine that drives
and controls the activity on a small scale. In this Letter we
propose a breakthrough in the theoretical and numerical
study of a small scale thermal engine. Our starting point
is the observation that one of the basic and most popular
models, namely, the Smoluchowski-Feynman ratchet [2–
4], is needlessly complicated and can be replaced by a
simplified construction involving exclusively hard core
interactions. Its properties, including speed, diffusion
coefficient, and heat conductivity, can be measured very
accurately by hard disk molecular dynamics and can be
calculated exactly from microscopic theory.

In Fig. 1(a), we have schematically depicted the con-
struction originally introduced by Smoluchowski [4] in
his discussion of Maxwell demons and reintroduced with
two compartments at different temperatures by Feynman
[3]. One compartment contains a ratchet with a pawl and
a spring, mimicking the rectifier device that is used in
clockworks of all kinds. The macroscopic mode of opera-
tion of such an object generates the impression that only
clockwise rotations can take place, suggesting that this
construction can be used as a rectifier of the impulses
generated by the impacts of the particles in the other
compartment on the blades with which the ratchet is
rigidly linked. As Feynman has argued, such a rectifica-
tion is possible only when the temperature in both com-
partments is different.We now introduce a model which is
0031-9007=04=93(9)=090601(4)$22.50 
at the same time a simplification and a generalization of
this construction. First, we can dispose of the pawl and
the spring in the ratchet and consider any rigid but asym-
metric object. An example with a cone-shaped object in
one compartment and a flat ‘‘blade’’ or ‘‘sail’’ located in
the other one is illustrated in Fig. 1(b). Second, we replace
the single rotational degree of freedom with a single
translational degree of freedom [Figs. 1(c) and 1(d)].
Third, we restrict ourselves to two-dimensional systems.
Finally, the substrate particles in the various compart-
ments are modeled by hard disks which undergo perfectly
elastic collisions with each other while their center col-
lides elastically with the edges of the motor [5].

We first report on the results obtained from molecular
dynamics for two different realizations of our motor. The
first one, referred to as arrow-bar or AB, is inspired by the
2004 The American Physical Society 090601-1
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above discussion. It consists of one triangular-shaped
arrow in the first compartment and a flat bar in the other
[Fig. 1(c)]. The other motor, called arrow-arrow or AA,
consists of an identical triangular-shaped arrow in both
compartments [Fig. 1(d)]. Both units of the motor are
constrained to move as a rigid whole along the horizontal
x direction as a result of their collision with the hard disks
in the two compartments. The initial state of the hard disk
gases corresponds to uniform (number) densities �1 and
�2 and Maxwellian speeds at temperatures T1 and T2, in
compartments 1 and 2, respectively [6] (kB � 1 by choice
of units). The boundary conditions are periodic both left
and right and top and bottom. Unless mentioned other-
wise, the following parameter values are used: Each
compartment is a 1200 by 300 rectangle and contains
800 hard disks (mass m � 1, diameter 1); i.e., particle
densities �1 � �2 � 0:002 22. Initial temperatures were
set to T1 � 1:9 and T2 � 0:1. The motor has a mass M �
20, apex angle 2�0 � =18, and vertical cross section
S � 1. The averages are taken over 1000 runs.

When the temperatures are the same in both compart-
ments, T1 � T2, no rectification takes place. In fact, Fig. 2
shows that the motor undergoes plain Brownian motion,
with average zero speed, exponentially decaying velocity
correlations, and linearly increasing mean square dis-
placement. The corresponding friction and diffusion co-
efficient obey the Einstein relation. On the other hand, as
soon as the temperatures are no longer equal, the motor
spontaneously develops an average systematic drift along
the x axis. The amplitude and direction of the speed
depend in an intricate way on the parameters of the
problem. In particular, the average speed increases with
the temperature difference and the degree of asymmetry
(decreasing �0) and decreases with increasing mass of the
motor roughly as 1=M (see the lower panel in Fig. 3).
Note furthermore that the observed average speed can be
very large, i.e., comparable to the thermal speed
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FIG. 2. Probability density P�x; t� for the position x of motor
AB at times t � 1000 (shaded) and t � 4000 (open). Left inset:
mean square displacement versus time. Right inset: velocity
correlation function.
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of the motor. The AA motor has a peculiar behavior,
resulting from the fact that both units are identical.
Whereas equilibrium is usually a point of flux reversal,
the velocity now displays a parabolic curve as a function
of T1 � T2 with a minimum equal to zero at the equilib-
rium state T1 � T2. It is clear from its symmetric con-
struction that, at least when �1 � �2, an interchange of T1
with T2 cannot modify the speed so that the latter has to
be an even function of T1 � T2, cf. Fig. 3.

We finally note that the observed systematic speed does
not persist forever. Indeed, the motion of the motor along
the x direction is a single degree of freedom that allows
for (microscopic) energy transfers and hence thermal
contact between the compartments, a fact that was over-
looked by Feynman in his analysis and first pointed out in
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FIG. 3. Upper panel: position of the motor as a function of
time. The thin solid curve shows a typical trajectory. All other
curves represent the average hx�t�i. The thick solid line is the
equilibrium case (T1 � T2 � 1) for motor AB. The dotted and
dashed curves correspond to the nonequilibrium situation for,
respectively, motor AA and AB (T1 � 1:9, T2 � 0:1). The
situation with switched temperatures for AB is the dashed
curve with a negative velocity. Lower panel: average velocity
of motor AB as a function of its mass M. Inset: average speed
(average over 2000 runs) of motors AA and AB as a function of
the initial temperature difference T1 � T2 (T1 � T2 � 2 fixed).
The theoretical results (7) and (8) predict lower speeds than the
simulations. However, when the magnitude is scaled, the theo-
retical curves (dotted lines) fit well with the simulations.
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[7,8]. As a result one observes that the temperatures in
both compartments converge exponentially to a common
final temperature with a concomitant reduction and even-
tual disappearance of the systematic motion as shown in
Fig. 4. While this feature has already been documented in
detail in other constructions [9], we have focused here on
conditions in which this conductivity is small and the
compartments sufficiently large so that one reaches a
quasisteady state with a well defined and measurable
average drift velocity.

To obtain analytic results from microscopic theory,
which are asymptotically exact, we focus on the situation
in which the compartments are infinitely large while the
densities of the hard disk gases are extremely low (more
precisely, the so-called high Knudsen number regime
requires that the mean free path is much larger than the
linear dimensions of the motor units). In this limit, each
compartment, characterized by its particle density �i and
temperature Ti, acts as an ideal thermal reservoir. We
furthermore assume that all the constituting units of the
motor are closed and convex. Under these circumstances,
the motor never undergoes recollisions and the assump-
tion of molecular chaos becomes exact [10]. The proba-
bility density P�V; t� for the speed ~V � �V; 0� of the
motor thus obeys the following Boltzmann-Master equa-
tion:

@tP�V; t� �
Z
dr�W�V � r; r�P�V � r; t�

�W�V; r�P�V; t�	: (1)

W�V; r� is the transition probability per unit time for the
motor to change speed from V to V � r due to the
collisions with the gas particles in various compartments.
The explicit expression for W�V; r� follows from elemen-
tary arguments familiar from kinetic theory of gases,
taking into account the statistics of the perfectly elastic
collisions of the motor, constrained to move along the
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FIG. 4. Exponential decay of the temperatures to a final
common value (Tfinal � �T1 � T2�=2 � 1.) in motor AB and
concomitant disappearance of the average drift speed. To
enlarge the conductivity, a small mass M � 1, a large vertical
cross section S � 10, and a large apex angle �0 � =9 are used.
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x direction, with the impinging particles:

W�V; r� �
X
i

Z 2

0
d�

Z 1

�1
dvx

Z 1

�1
dvy�i�i�vx; vy�

�LiFi���� ~V � ~v� � ~e���H�� ~V � ~v� � ~e���	

��
�
r�

m
M
B����V � vx � vy cot��

�
: (2)

Here, the sum over i runs over all the different compart-
ments, Li is the total circumference of the ith unit of the
motor, B��� � 2Msin2�=�M�msin2��, H�x	 is the
Heaviside function, and ~e��� � �sin�;� cos�� is the unit
vector normal to a surface at angle �, � 2 �0; 2	,
the angles being measured counterclockwise from
the horizontal axis. �i�vx; vy� � m exp��m�v2

x �

v2y�=2kBTi	=2kBTi is the Maxwellian velocity distribu-
tion in compartment i. The shape of any closed convex
unit of the motor is defined by the (normalized) proba-
bility density F��� such that F���d� is the fraction of its
outer surface that has an orientation between � and ��
d�. Note that hsin�i � hcos�i � 0, where the average is
with respect to F���, a property resulting from the re-
quirement that the object is closed.

The Boltzmann-Master equations (1) and (2) can now
be solved by a perturbation expansion in

�����������
m=M

p
, follow-

ing a procedure similar to the one used in one-
dimensional problems such as the Rayleigh piston [11]
or the adiabatic piston [12]. The details are somewhat
involved and will be given elsewhere [13]. To lowest order
in the perturbation, the Master equation (1) reduces to a
Fokker-Planck equation equivalent to the following linear
Langevin equation:

M _V � �
X
i

 iV �
X
i

�����������������
2 ikBTi

p
!i (3)

with !i independent Gaussian white noises of unit
strength and

 i � 4�iLi

��������������
kBTim
2

s Z 2

0
d�Fi���sin

2� (4)

the friction coefficient experienced by the motor due to
its presence in compartment i. We conclude that at this
order of the perturbation the contributions from the sepa-
rate compartments add up and are each— taken sepa-
rately—of the linear equilibrium form. In particular
the motor has no (steady state) drift velocity, hVi � 0.
It does, however, conduct heat. In the case of the two
compartments 1 and 2, the heat flow per unit time be-
tween them is, as anticipated in Ref. [7], given by
a Fourier law: _Q1!2 � #�T1 � T2� with conductivity # �
kB 1 2=�M� 1 �  2�	. One also concludes from (3) and
(4) that the (steady state) velocity distribution of the
090601-3
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motor is Maxwellian, but at the effective temperature

Teff �
X
i

 iTi

�X
i

 i: (5)

At the next order of perturbation in
�����������
m=M

p
, the corre-

sponding Langevin equation becomes nonlinear in V
while at the same time the Gaussian nature of the white
noise is lost, a feature well known from the van Kampen
1=� expansion [11]. The most relevant observation is the
appearance, at the steady state, of a nonzero drift veloc-
ity:

hVi �

�����������������
kBTeff
8M

s �����
m
M

r P
i
�iLi

Ti�Teff
Teff

R
2
0 d�Fi���sin

3�

P
i
�iLi

������
Ti
Teff

q R
2
0 d�Fi���sin

2���
:

(6)

This speed is of the order of the thermal speed of the
motor, times the expansion parameter

�����������
m=M

p
, and further

multiplied by a factor that depends on the details of the
construction. Note that the Brownian motor ceases to
function in the absence of a temperature difference (Ti �
Teff ; 8 i) and in the macroscopic limit M ! 1 (hVi �
1=M). Note also that the speed is scale independent, i.e.,
independent of the actual size of the motor units: hVi is
invariant under the rescaling Li to CLi. To isolate more
clearly the effect of the asymmetry of the motor on its
speed, we focus on the case where the units have the same
shape in all compartments, i.e., Fi��� � F���. In this case
Teff is independent of F��� and the drift velocity is
proportional to hsin3�i=hsin2�i, with the average defined
with respect to F���. The latter ratio is in absolute value
always smaller than 1, a value that can be reached for
‘‘strongly’’ asymmetric objects as shown below on a
particular example.

We now turn to a comparison between theory and
simulations. From the general result (6), one obtains the
following expressions for the speed of the two motors that
were studied:

hViAA � �1�2�1� sin�0�

�
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r ���������
kB
8M
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	2

; (7)

hViAB � �1�2�1� sin2�0�

�
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s
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�����
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p
�1� sin�0�	2

:

(8)

In agreement with previous arguments, the AA motor,
cf. (7), always moves in the same direction, namely, the
direction of the arrow. Furthermore, it is an example
where one can increase the asymmetry to generate a
maximum drift speed. The limit jhsin3�ij � hsin2�i is
reached here when �0 ! 0, which corresponds to an infi-
090601-4
nitely elongated and sharp arrow in both compartments.
Because of strong finite size effects (e.g., sound waves
among others), the agreement between the theoretical
results (7) and (8) and the computer simulations is only
qualitative: the theory predicts speeds which are typically
20%–40% lower. However, Eqs. (7) and (8) can be fitted
to the simulation results by appropriately rescaling the
magnitude of the velocity (see Fig. 3), indicating that
their dependencies on the parameters, M, T1, and T2,
are in good agreement with the simulations.

The problem of the Maxwell demon has been haunting
the imagination and theoretical efforts of physicists for
more than a hundred years. It is thus reassuring that the
analytical and numerical discussions of the microscopic
model presented here are in agreement with the consensus
that thermal fluctuations cannot be rectified in a system at
equilibrium. In addition, our model provides an example
of a genuine Brownian motor: the rectification of non-
equilibrium thermal fluctuations appears outside the
scope of linear irreversible thermodynamics, namely, at
the level of nonlinear response, where the usual separa-
tion between systematic and noise terms, as made explicit
in a linear Langevin equation, is no longer possible.

This work was supported in part by the National
Science Foundation under Grant No. DMS-0079478.

[1] H. S. Leff and A. F. Rex, Maxwell’s Demon (Adam

Hilger, Bristol, 1990).

[2] P. Reimann, Phys. Rep. 361, 57 (2002).
[3] R. P. Feynman, R. B. Leighton, and M. Sands, The

Feynman Lectures on Physics I (Addison-Wesley,
Reading, MA, 1963), Chap. 46.

[4] M. v. Smoluchowski, Phys. Z. 13, 1069 (1912).
[5] This trick avoids collisions of the disk’s surfaces with the

sharp corners of the motor; for more details; see
C. Van den Broeck, R. Kawai, and P. Meurs, in Noise
in Complex Systems and Stochastic Dynamics, edited by
Lutz Schimansky-Geier, Derek Abbott, Alexander
Neiman and Christian Van den Broeck, SPIE
Proceedings Vol. 5114 (SPIE–International Society for
Optical Engineering, Bellingham, WA, 2003), p. 1.

[6] Note that our system as a whole is finite and isolated so
that strictly speaking the equilibrium state should refer
to a microcanonical ensemble.

[7] J. M. R. Parrondo and P. Espagnol, Am. J. Phys. 64, 1125
(1996).

[8] K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997).
[9] C. Van den Broeck, E. Kestemont, and M. Malek

Mansour, Europhys. Lett. 56, 771 (2001).
[10] J. R. Dorfman, H. Van Beijeren, and C. F. McClure, Arch.

Mech. 28, 333 (1976).
[11] N. G. van Kampen, Stochastic Processes in Physics and

Chemistry (North-Holland, Amsterdam, 1981).
[12] Ch. Gruber and J. Piasecki, Physica (Amsterdam) 268A,

412 (1999); E. Kestemont, C. Van den Broeck, and
M. Malek Mansour, Europhys. Lett. 49, 143 (2000).

[13] P. Meurs, C. Van den Broeck, and A. Garcia (to be
published).
090601-4


