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The probability distribution of the entropy production for the effusion of an ideal gas between two com-
partments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agree-
ment with numerical data from hard disk molecular dynamics simulations.
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I. INTRODUCTION

Effusion is the motion of a gas through a small pore or
opening. The linear dimension of the opening is assumed to
be smaller than the mean-free path of the gas particles. Con-
sequently, the leak does not disturb the state of the gas. If the
latter is at equilibrium, it will remain so and many properties
of the effusing gas particles can be easily calculated, using
basic arguments from kinetic theory of gases. One of the
older results is the so-called Graham’s law �1�, stating that
the rate of effusion is inversely proportional to the square
root of the mass of the gas particles. This observation was in
fact used in the production of the atomic bomb during the
Manhattan project for the enrichment of uranium. Graham’s
law is a direct consequence of the obvious fact that faster
particles will exit through the hole more frequently. In fact,
the average kinetic energy of the escaping particles turns out
to be 2kT, to be compared to the bulk average value of
�3/2�kT �three-dimensional system�. As a result, effusion
will lead to a cooling of the gas, a principle that is used to
date for refrigeration �2�. In the early 1900s, Knudsen inves-
tigated other aspects of effusion �3�. He discovered the co-
sine law, corresponding to the fact that the particles exit with
an isotropic angular distribution, a property which was sub-
sequently used for coating spherical bulbs, and which is also
related to the Kirchoff’s laws of radiation and to the proper
boundary condition for particles that are thermally reemitted
from an absorbing wall �4�.

An interesting situation occurs when the small hole forms
the contact between two containers �referred to as Knudsen
cells� with gases which are separately at equilibrium, but not
at equilibrium with each other, cf. Fig. 1. While local equi-
librium �inside each container� is preserved, the existing den-
sity and temperature gradients, which can be arbitrarily large,
will lead to both particle and energy fluxes. A somewhat
surprising observation, already noted by Knudsen, is that for
�A

�TA=�B
�TB an energy flux is present in the absence of a

corresponding particle flux, cf. Eq. �50� �this peculiar prop-
erty also appears in the so-called Jepsen gas �5��. Similarly, a
particle flux is present with no corresponding energy flux
when �ATA

3/2=�BTB
3/2, cf. Eq. �49�. When operating in the re-

gime of weak gradients, more precisely in the framework of
linear irreversible thermodynamics, the properly defined
thermodynamic forces and fluxes are related to each other by
a symmetric Onsager matrix �6–8�.

The above properties refer to average values of the fluxes.
It is, however, clear that one can easily calculate fluctuations
and correlation functions. For example, the typical appear-
ance of long range spatial correlations in nonequilibrium sys-
tems was illustrated in detail for an array of Knudsen cells
�9–12�.

In the present paper, we go one step further and calculate
the full joint probability distribution for the particle and en-
ergy flux. This result is particularly relevant because of the
recent discovery of various work and fluctuation theorems
�13–24�, which result from a time reversal symmetry of the
underlying dynamics. In the present case, it implies that the
probability density Pt��S� for the entropy �S, produced by
effusion during a time interval of duration t, satisfies the
following relation:

Pt��S�
Pt�− �S�

= e�S/k. �1�

This result implies

�e−�S/k� = 1, �2�

and consequently �invoking Jensen’s inequality� ��S��0, in
agreement with the second law.
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FIG. 1. The system under consideration: two ideal gases, in
equilibrium at their respective temperatures and densities, can ex-
change energy and particles through a small hole in the common
adiabatic wall.
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The purpose of this paper is to present an explicit and
detailed analysis of effusion in the context of various fluc-
tuation theorems. Their verification is most easily done at the
level of the cumulant generating function. The effusion prob-
lem, moreover, has the pleasant feature that the marginal
distribution functions for particle and energy transport can
also be calculated explicitly. They obey separate fluctuation
theorems when the thermodynamic force for the other trans-
port process vanishes. Their large deviation functions can be
calculated explicitly and are related by Legendre transforma-
tion to the cumulant generating function. Finally, we report
the explicit results for the two-dimensional version, allowing
a detailed comparison with numerical data from hard disk
molecular dynamics simulations.

II. FLUCTUATION THEOREM FOR EFFUSION

Consider two large reservoirs, A and B, separated by a
common adiabatic wall, each containing an ideal gas at equi-
librium, with uniform density �i and Maxwellian velocity
distribution �i�v�� at temperature Ti, i� �A ,B	 �cf. Fig. 1�:

�i�v�� = 
 m

2�kTi
�3/2

e−mv2/2kTi. �3�

At time t=0, a small hole with surface area � is opened,
allowing an exchange during a time interval of length t, of
particles and energy between the two compartments. The di-
mensions of the hole are assumed small compared to the
mean-free path of the gas particles, and the reservoirs suffi-
ciently large so that the equilibrium state in both parts is not
affected by the exchange. In particular, the temperatures and
densities in both reservoirs remain constant �38�. Hence the
change in entropy in the total system, upon a total transfer of
energy �U and of particles �N from A to B during t, is given
by

�S = �SA + �SB = −
1

TA
�U +

�A

TA
�N +

1

TB
�U −

�B

TB
�N

= AU�U + AN�N . �4�

We introduced, in accordance with the definitions from irre-
versible thermodynamics, the following thermodynamic
forces �affinities� for energy and particle flow, respectively:

AU =
1

TB
−

1

TA
;

AN =
�A

TA
−

�B

TB
= k log��A

�B

TB

TA
�3/2 . �5�

In the last equality, we used the expression for the chemical
potential of an ideal gas. Note that the thermodynamic force
AN diverges when one of the �infinitely large� reservoirs is
empty, so that free effusion into unlimited space, implying an
infinitely large entropy production, corresponds to a singular
limit.

Clearly, as single particle crossings from both sides con-
tribute to the values of �U and �N in the course of time,
these quantities are fluctuating, and hence so is the entropy

production �S. As indicated in the Introduction, the resulting
probability density for the entropy production should obey
the fluctuation theorem, Eq. �1�. Clearly, the contributions to
�S from any two equal but nonoverlapping time intervals are
independent and identically distributed random variables. In
other words, �S is a stochastic process with independent
increments. As a result its cumulant generating function has
the following form:

�e−	�S� = e−t��	�. �6�

The fluctuation theorem Eq. �1� implies the following sym-
metry relation for the function ��	� �to which we will also
refer, for brevity, as the cumulant generating function�:

��	� = ��k−1 − 	� . �7�

We will in fact prove for the system under consideration a
more detailed fluctuation theorem, expressed in terms of the
joint probability density, namely

Pt��U,�N�
Pt�− �U,− �N�

= e�S/k. �8�

The increments of �U and �N are again independent so that
the corresponding cumulant generating function has the form

�e−�	U�U+	N�N�� = e−t��	U,	N�. �9�

In terms of the function ��	U ,	N�, the detailed fluctuation
theorem reads

��	U,	N� = ��AU/k − 	U,AN/k − 	N� . �10�

Since �S=AU�U+AN�N, one has ��	�=��	AU ,	AN�, so
that the detailed fluctuation theorem implies the “normal”
fluctuation theorem.

Equation �8� also implies fluctuation theorems for energy
and particle transport separately, when the corresponding
thermodynamic force for the other process vanishes. Indeed,
in this case only one of the variables, �U or �N, appears in
�S. Bringing the denominator from the left-hand side to the
right-hand side in Eq. �8�, subsequent integration over the
other variable implies

Pt��U�
Pt�− �U�

= e�S/k when AN = 0, �11�

and

Pt��N�
Pt�− �N�

= e�S/k when AU = 0. �12�

We now proceed to a direct verification of the detailed fluc-
tuation theorem Eq. �10� and its implications Eqs. �7�, �11�,
and �12� by an explicit evaluation of the generating function
��	U ,	N�.

III. MASTER EQUATION AND CUMULANT GENERATING
FUNCTION

During a small time interval dt, the contributions to quan-
tities �U and �N result from individual particle transport
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across the hole. Following basic arguments from kinetic
theory of gases �for more details, see Appendix A�, the cor-
responding probabilities per unit time, TA→B�E� and
TB→A�E�, to observe a particle with kinetic energy 1

2mv2=E
crossing the hole from A→B and B→A, respectively, are
given by

TA→B�E� =
��A

�2�mkTA

E

kTA
e−E/kTA;

TB→A�E� =
��B

�2�mkTB

E

kTB
e−E/kTB. �13�

The probability density Pt��U ,�N� thus obeys the following
Master equation:

�

�t
Pt��U,�N� = �

0




TA→B�E�Pt��U − E,�N − 1�dE

+ �
0




TB→A�E�Pt��U + E,�N + 1�dE

− Pt��U,�N��
0




�TA→B�E� + TB→A�E��dE .

�14�

Note that the integral operators are of the convolution type,
in agreement with the fact that the processes �U and �N
have independent increments. Hence the exact solution of
Eq. �14�, subject to the initial condition P0��U ,�N�
=���U���N,0, is obtained by Fourier transform, i.e., by
switching to the cumulant generating function ��	U ,	N�.
Since the following integrals can be performed explicitly:

�
0




TA→B�E�e−	UEdE =
�

�2�m

�A
�kTA

�1 + kTA	U�2 ;

�
0




TB→A�E�e	UEdE =
�

�2�m

�B
�kTB

�1 − kTB	U�2 , �15�

we immediately obtain

��	U,	N� =
��k

�2�m

�A

�TA�1 −
e−	N

�1 + kTA	U�2
+ �B

�TB�1 −
e	N

�1 − kTB	U�2� . �16�

Equation �16� is a central result of this paper. One easily
verifies, using the explicit expressions for the thermody-
namic forces given in Eq. �5�, that this expression indeed
verifies the detailed fluctuation theorem Eq. �10�.

Note also that ��	U ,	N� can be written as the sum of two
contributions:

��	U,	N� = �A�	U,	N� + �B�− 	U,− 	N� , �17�

with

�A�	U,	N� =
��A

�kTA

�2�m
�1 −

e−	N

�1 + kTA	U�2 , �18�

and the similar expression for A changed into B. This addi-
tivity property derives from the statistical independence of
the fluxes from A→B and B→A.

IV. CUMULANTS

The joined cumulant �ij of power i in energy flux and j in
particle flux appears as a coefficient of the Taylor expansion
of the cumulant generating function, namely

��	U,	N� = −
1

t
�
i,j=0



�− 1�i+j	U

i 	N
j

i ! j!
�ij . �19�

The explicit expressions for the cumulants of energy and
particle flux can thus easily be obtained from Eq. �16�. We
mention the following results. The first order cumulants read:

�10 = ��U� =
t�k3/2

�2�m
2��ATA

3/2 − �BTB
3/2�; �20�

�01 = ��N� =
t�k1/2

�2�m
��ATA

1/2 − �BTB
1/2� . �21�

The second order cumulants are

�20 = ���U2� =
t�k5/2

�2�m
6��ATA

5/2 + �BTB
5/2�; �22�

�11 =
t�k3/2

�2�m
2��ATA

3/2 + �BTB
3/2�; �23�

�02 = ���N2� =
t�k1/2

�2�m
��ATA

1/2 + �BTB
1/2� . �24�

Similar expressions can be obtained for the higher order cu-
mulants. Note that all cumulants are proportional to time, the
specifying feature of processes with independent increments.

V. MARGINAL DISTRIBUTIONS

The explicit calculation of Pt��U ,�N� is quite involved,
but it is relatively easy to obtain analytic expressions for the
marginal distributions:

Pt��N� = �
−


+


Pt��U,�N�d�U; �25�

Pt��U� = �
�N=−


+


Pt��U,�N� . �26�

The corresponding cumulant generating functions of these
marginal distributions are obtained by setting 	N=0 and 	U
=0, respectively, in Eq. �16�.

The generating function for particle transport is thus
found to be
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��0,	� =
��k

�2�m
��A

�TA�1 − e−	� + �B
�TB�1 − e	�� .

�27�

This result is identical to that for a random walk taking steps
to the right and left with probabilities per unit time:

rA = ��A
�kTA/2�m; �28�

rB = ��B
�kTB/2�m , �29�

respectively. This relation is intuitively clear since the pas-
sages of particles from reservoir A to B and vice versa induce
a random walk on the variable �N. A similar expression for
the cumulant generating function, but with rB=0, appears in
the problem of shot noise �25,26�. The probability distribu-
tion Pt��N� is, as is well-known from the random walk lit-
erature, expressed in terms of the modified Bessel function.
Since we have

e−t��0,	� = �
�N

e−	�NPt��N� , �30�

and using the generating function of the modified Bessel
functions �27�:

e1/2z�e−	+e	� = �
n

e−	nIn�z� , �31�

one finds

Pt��N� = e−�t�/�2�m���A�kTA+�B�kTB�


�A
�TA

�B
�TB

��N/2

I�N
t�� 2k

�m
��A�B

�TATB�1/2� .

�32�

When TA=TB, i.e., when the thermodynamic force for the

energy flow vanishes, AU=0, we can verify explicitly the
fluctuation theorem Eq. �12�:

Pt��N�
Pt�− �N�

= 
�A

�B
��N

= �eAN/k��N = e�S/k. �33�

The calculation of the marginal probability distribution
for the energy transport is slightly more involved. We will
invoke the independence of fluxes from each reservoir to the
other one, as already alluded to when discussing the additiv-
ity property of the generating function. The total amount of
energy �U transferred during a certain time interval can be
written as the difference of two independent contributions
�UA and �UB, being the energy coming from compartment
A and B, respectively:

�U = �UA − �UB. �34�

It follows that Pt��U� can be expressed as a convolution
integral:

Pt��U� = �
−


+


Pt
A�E�Pt

B�E − �U�dE , �35�

with Pt
A��U� and Pt

B��U� being the probability distributions
to have an energy transfer �U as a result of particles solely
going from A→B and B→A, respectively. From

e−t�A�	U,0� = �
−


+


e−	U�UPt
A��U�d�U , �36�

the calculation of Pt
A��U� involves an inverse Fourier trans-

form, which is reproduced in Appendix B. The final result
reads

Pt
A��U� = e−t��A�kTA/2�m����U� + ���U�

t��A

�2�mkTA

�U

kTA
e−�U/kTA

0F2
�	,�3

2
,2�,

t��A
�kTA

4�2�m
��U

kTA
2�� . �37�

The expression for Pt
B��U� is obtained by replacing A by B

in the above equation. When TA
3/2 /�A=TB

3/2 /�B, i.e., the ther-
modynamic force for the particle flow vanishes, AN=0, the
resulting probability density Pt��U� satisfies the fluctuation
theorem Eq. �12�. This follows directly by verifying from Eq.
�37� that Pt

A��U� and Pt
B��U� obey the relation �"E�:

Pt
A�E�Pt

B�E − �U�

Pt
A�E − �U�Pt

B�E�
= e�S/k. �38�

VI. LARGE DEVIATION FUNCTION

The particle transport �N is expected to grow propor-
tional to time t. The asymptotic behavior of Pt��N� for large
time t→
 is indeed described in terms of the variable n
��N / t, namely

Pt��N� � e−t��n�. �39�

More precisely, the following limit
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��n� = − lim
t→


1

t
ln Pt�nt� �40�

is a convex function, independent of t, and known as the
large deviation function. This function can also be obtained
as the Legendre transform of the generating function ��0,	�:

��n� = sup
	

���0,	� − 	n	 . �41�

Using the following asymptotic expansion of the Bessel
functions for large orders �27�:

I���z� �
1

�2��

e���1+z2+ln�z/�1+�1+z2��	

�1 + z2�1/4 for � → 
 ,

�42�

and substituting �=nt and z=2�rArB /n, we obtain from Eq.
�32�

Pt�nt� � e−t�rA+rB�ent ln�rA/rB
1

�2�t


et��4rArB+n2+n ln�2�rArB/�n+�4rArB+n2��	

�4rArB + n2�1/4 . �43�

This result leads to the following expression for ��n�:

��n� = rA + rB − �4rArB + n2 − n ln
�4rArB + n2 − n

2rB
� ,

�44�

which is of course the well-known large deviation function
for a �biased� random walk. The same result is obtained us-
ing the Legendre transform of the generating function
��0,	�. A sketch of both ��0,	� and ��n� is given in Fig. 2.
The function ��n� is positive everywhere, and has a single
zero at the most probable value n= n̄=rA−rB.

Similarly, the asymptotic properties for t→
 of the en-
ergy transport are obtained by focusing on the scaled vari-
able u��U / t. The large deviation function of Pt

A��U�,

�A�u� = − lim
t→


1

t
ln Pt

A�ut� , �45�

is again obtained either by Legendre transform of �A�	 ,0�,
cf. Eq. �18�, or directly from Eq. �37� in which case the

asymptotic behavior of 0F2��	 , �3/2 ,2	 ,z� is needed:

0F2��	,�3/2,2	,z� �
e3z1/3

4�3�z5/6
for �z� → 
 . �46�

The final result reads

�A�u� =
��A

�kTA

�2�m
+

u

kTA
−

3
�kTA


 ��Au2

4�2�m
�1/3

. �47�

A sketch of the generating function �A�	 ,0� and �A�u� is
given in Fig. 3. �A�u� has a unique zero at the most probable
value u= ū=2��A�kTA�3/2 /�2�m=2kTArA. This result is in
agreement with the fact, see introduction, that particles carry
on average 2kTA energy. Note that Pt

A��U� decays exponen-
tially for large �U, explaining the divergence of �A�	 ,0� for

	→
�

−1/ �kTA�, and the convergence of �A�u� to a linear func-
tion for u→
.

VII. RECIPROCITY RELATIONS

Averaging Eq. �4� and taking the time derivative gives the
average entropy production

d

dt
��S� = JUAU + JNAN, �48�

where we define the macroscopic fluxes JU and JN corre-
sponding to energy and particle transport, cf. Eqs. �20� and
�21�:

JU =
d

dt
��U� =

�2k3/2

�2�m
��ATA

3/2 − �BTB
3/2�; �49�

JN =
d

dt
��N� =

��k
�2�m

��ATA
1/2 − �BTB

1/2� . �50�

In general, these fluxes are functions of the affinities
�AU ,AN�. Close to equilibrium, i.e., for small temperature
and density differences �T and ��, we can write

TA = T − �T/2; �A = � − ��/2;

TB = T + �T/2; �B = � + ��/2, �51�

so that the thermodynamic forces become

0 rA-rB

0
0

0

ϕ(n)µ(0,λ)

λ n

FIG. 2. Sketch of the generating function ��0,	� and its Leg-
endre transform, the large deviation function ��n� for the case
rA�rB.

0
0

0

0

ϕA(u)µA(λ)

λ u2kTArA

FIG. 3. Sketch of the generating function �A�	� and the large
deviation function �A�u�.
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AU � −
�T

T2 and AN � k
3

2

�T

T
−

��

�
� . �52�

A Taylor expansion of JU and JN leads to the following
results:

JU =
�

�2�m
2k1/2�T3/2
3kTAU + AN +

9

64
kT3AU

3

+
3

32
T2AU

2 AN +
3

2048
kT5AU

5 +
3

2048
T4AU

4 AN + . . . � ,

�53�

and

JN =
�

�2�m
2k1/2�T3/2
AU +

1

2kT
AN −

1

64
T2AU

3

−
1

64

T

k
AU

2 AN −
1

1024
T4AU

5 −
5

4096

T3

k
AU

4 AN + ¯ � .

�54�

From these expressions, it is clear that the Onsager symme-
try �6–8� is satisfied:

� �JU

�AN
�

0

= � �JN

�AU
�

0

, �55�

where the derivatives are evaluated at equilibrium
�AU ,AN�= �0,0�. This relation is in fact also a direct conse-
quence of the symmetry relation of ��	U ,	N�, cf. Eq. �10�
�18,28–30�. To show this explicitly, it is convenient to in-
clude the dependence of � on the thermodynamic forces, i.e.,
we write ��	 ,A� �for ease of notation, we use 	= �	U ,	N	
and A= �AU ,AN	�. We then find

� �JU

�AN
�

0

= � �2��	,A�
�AN � 	U

�
0

= � �2��A/k − 	,A�
�	U � AN

�
0

= −
1

k
� �2��	,0�

�	U � 	N
�

0
+ � �2��− 	,A�

�	U � AN
�

0

. �56�

The last term is again −�JU /�AN�0, so that

� �JU

�AN
�

0

= −
1

2k
� �2��	,0�

�	U � 	N
�

0
, �57�

which leads to the Onsager symmetry relation.

VIII. 2D RESULTS

All the above results have been derived for three spatial
dimensions. For comparison with computer simulations, we
reproduce the corresponding results for two spatial dimen-
sions. We note the following two main modifications.

�i� The thermodynamic force corresponding to the par-
ticle flux has the following form:

AN = k log��ATB

�BTA
 . �58�

�ii� The transition rates TA→B�E� and TB→A�E� are to be

calculated using the two-dimensional Maxwellian velocity
distribution:

�i�v�� =
m

2�kTi
e−mv2/2kTi, �59�

namely

TA→B�E� = �
v=0


 �
�=0

�

vdvd��A�A�v���v sin ��
E −
1

2
mv2�

=
�2��A

��mkTA


 E

kTA
�1/2

e−E/kTA; �60�

and

TB→A�E� = �
v=0


 �
�=�

2�

vdvd��B�B�v����− v sin ��

�
E −
1

2
mv2� =

�2��B

��mkTB


 E

kTB
�1/2

e−E/kTB.

�61�

They display a prefactor proportional to �E, hence transi-
tions with E�kT gain more weight as compared to the 3D
situation. The calculation of the generating function proceeds
in exactly the same way. The final result differs from the 3D
case only by the 3/2 power law exponent:

��	U,	N� =
��k

�2�m

�A

�TA�1 −
e−	N

�1 + kTA	U�3/2
+ �B

�TB�1 −
e	N

�1 − kTB	U�3/2� . �62�

The fluctuation relation Eq. �10� is again verified. The first
and second order cumulants read:

�10 = ��U� =
3

2

t�k3/2

�2�m
��ATA

3/2 − �BTB
3/2�; �63�

�01 = ��N� =
t��k
�2�m

��ATA
1/2 − �BTB

1/2�; �64�

�20 = ���U2� =
15

4

t�k5/2

�2�m
��ATA

5/2 + �BTB
5/2�; �65�

�11 =
3

2

t�k3/2

�2�m
��ATA

3/2 + �BTB
3/2�; �66�

�02 = ���N2� =
t��k
�2�m

��ATA
1/2 + �BTB

1/2� . �67�

IX. 2D MOLECULAR DYNAMICS

Extensive molecular dynamics simulations were carried
out for the 2D system. Two equally large reservoirs of total
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size 5000200 �reflecting boundary conditions� and con-
nected through a hole of diameter �=5 contain dilute gases
of hard disks of diameter d=1 and mass m=1. Initially, the
hole between the reservoirs is closed and NA �NB� disks are
randomly placed in reservoir A �B�. Their velocities are ran-
domly sampled from the Maxwellian velocity distribution at
the corresponding temperature and slightly rescaled in order
to make the center-of-mass velocity zero in both reservoirs,
and the total energy equal to NAkTA and NBkTB in reservoir A
and B, respectively. Then, the system is allowed to relax for
a certain period, after which the hole is opened and �U and
�N are measured. Averages are taken over 1 000 000 realiza-
tions. The duration time � of the simulation is measured in
units of the average time between two particles going from A
to B, and is related to t via

� =
t��A

�kTA

�2�m
. �68�

A comparison with the above given theoretical results for an
ideal gas is shown in Figs. 4–9 and Tables I and II. Agree-
ment is extremely good. In particular, the fluctuation theorem

is verified, cf. Eq. �1�. In Tables I and II, we have also in-
cluded the numerically obtained value of the average �exp
−�S /k�. Note the deviations for increasing � from the exact
theoretical value 1 due to unsufficient sampling of the nega-
tive tails of Pt��S�.

X. DISCUSSION

The results presented here, the fluctuation theorem for the
effusion of an ideal gas, have a certain academic and didactic
appeal. The underlying physics is easy to grasp, while the
exact and detailed analytic solution completes the under-
standing. The results are not restricted to the regime of linear
response since the gradients in density or temperature be-
tween the reservoirs can be arbitrarily large. Yet, a few words
of caution are in place. First, the present example is only a
limited illustration of the fluctuation theorem. By consider-
ing effusion through a small hole, the system is at all times in
local equilibrium. In this case, the fluctuation theorem can in
fact be derived using equilibrium concepts only. However,
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FIG. 4. �Color online� Comparison between theory and sim-
ulation with �A /�B=2.0 and TA /TB=2.0 �NA=2NB=2000 and
TA=2TB=1� for different time intervals. �a� Plot of the marginal
distribution P���U� �a Dirac delta contribution at the origin is omit-
ted�. �b� Plot of the marginal distribution P���N�. Dots: molecular
dynamics simulations; and full line: theoretical results �in �b� they
serve as a guide to the eye�.
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=2.0, TA /TB=2.0 �NA=2NB=2000 and TA=2TB=1� and �=1.0.

 τ = 0.1

-10 0 10∆S/k

Pτ(∆S) / Pτ(-∆S)

10-4

10-2

100

102

104

 τ = 1.0

-10 0 10∆S/k

Pτ(∆S) / Pτ(-∆S)

10-4

10-2

100

102

104

 τ = 4.0

-10 0 10∆S/k

Pτ(∆S) / Pτ(-∆S)

10-4

10-2

100

102

104

 τ = 8.0

-10 0 10∆S/k

Pτ(∆S) / Pτ(-∆S)

10-4

10-2

100

102

104

a) b)

c) d)

FIG. 6. �Color online� Plot of P���S� / P��−�S� for �A /�B=2.0
and TA /TB=2.0 �NA=2NB=2000 and TA=2TB=1� for different time
intervals: �a� �=0.1, �b� �=1.0, �c� �=4.0, and �d� �=8.0. The
dashed line shows the theoretical result exp��S /k�.
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the fluctuation theorem remains valid away from local equi-
librium, for example, when the opening between the reser-
voirs is much larger than the mean-free path �31�. Second,
either due to the smallness of the hole or due to the ideality

of the gas, we did not need to discuss the energy required to
open and close the hole connecting the reservoirs. The size
and impact of this contribution on the fluctuation theorem
will obviously depend on the system under consideration
�32–36�. Finally, fluctuation and work theorems can also be
formulated for time-dependent situations, rather than the sta-
tionary state that was discussed here. The trademark of these
theorems is that one has to distinguish probability distribu-
tions �for entropy or work� for direct and time reversed
schedules. These probabilities are typically not identical and
in fact can describe quite different physical situations of the
system, see, for example, �37�.

APPENDIX A: TRANSITION RATES

The calculation of the transition rates as given in Eq. �13�
is similar to that of the pressure in textbooks on kinetic
theory. We focus here on TA→B�E�, since the result for
TB→A�E� is obtained from it by replacing A→B. In the fol-
lowing, we write the velocity in spherical coordinates, i.e.,
v� = �v sin � cos � ,v sin � sin � ,v cos ��, with the z axis per-
pendicular to the common wall between the two reservoirs,
and pointing from A to B, see Fig. 10.

TA→B�E�dEdt is the probability to observe a particle with
kinetic energy in the range �E ,E+dE�, crossing the hole
from A to B during a time interval dt. Two requirements must
be fulfilled in order to observe this crossing. First, the kinetic
energy of the particle must be in the specified energy range,
which means that its velocity is in the range �v ,v+dv� with

v = �2E/m and dv = dE/�2Em . �A1�

Second, the particle must be able to reach the hole during the
time interval dt. A particle with velocity v cos � in the z
direction must therefore be located inside the volume
�v cos �dt �cf. Fig. 10�. Since the z component of the veloc-
ity must be positive if the particle is to move from A to B; �
has to be between 0 and � /2.
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Adding all contributions from the different directions �
and � and noting that the velocities are distributed according
to the Maxwellian velocity distribution �A�v��, leads to the
following result:

TA→B�E�dEdt

= �
�=0

�/2 �
�=0

2�

v2 sin �dvd�d��A�A�v���v cos �dt

= �
�=0

�/2 �
�=0

2� 2E

m
sin �

dE
�2Em

d�d��A
 m

2�kTA
�3/2

e−E/kTA��2E

m
cos �dt =

��A

�2�mkTA

E

kTA
e−E/kTAdEdt .

�A2�

APPENDIX B: CALCULATION OF THE MARGINAL
DISTRIBUTION

Our starting point in the calculation of the marginal prob-
ability distribution Pt

A��U� is the generating function
�A�	 ,0�, cf. Eq. �17�. For ease of notation, we use the fol-
lowing dimensionless quantities:

X =
�U

kTA
; � =

t��A
�kTA

�2�m
; � =

�A

�B
; � =

TA

TB
, �B1�

which are, respectively, the energy measured in terms of the
thermal energy in part A, the average time between two par-
ticles going from A to B, the ratio of the densities, and the
ratio of the temperatures. In these new variables, the gener-
ating function becomes

�A�	,0� = 1 −
1

�1 + 	�2 . �B2�

Taking into account the Jacobian of the transformation form
�U→X, and defining Pt

A��U�d�U= f��X�dX we obtain

e−��1−1/�1 + 	�2� = �
−


+


e−	Xf��X�dX . �B3�

By inverse Fourier transform �setting 	= iq�, we find

f��X� =
1

2�
�

−


+


e−��1−1/�1 + iq�2�eiqXdq . �B4�

Under the integral, we add and subtract the function e−�eiqX.
The purpose for doing so is twofold. First, it allows one to
single out the Dirac delta at the origin:

f��X� = e−���X� +
e−�

2�
�

−


+


�e�/�1 + iq�2
− 1�eiqXdq . �B5�

Second, the remaining integral can be converted to a contour
integral using Jordan’s Lemma by noting that the complex
function exp �

�1+iz�2 −1 goes to zero for large values of �z�.
Then, for X�0 �X�0�, we can close the contour in the
upper �lower� half plane. Since the integrand has only one
�essential� singularity at z= i, i.e., in the upper half plane, and
using the residue theorem it follows that f��X�0�=0, a re-
sult that was expected since a particle going from A to B
always takes a positive amount of energy with it �its kinetic
energy�. Using the Heaviside function ��x� we conclude

TABLE I. Comparison between molecular dynamics simulation and theory ��A /�B=2.0 and TA /TB=2.0�.

� �10 �01 �20 �11 �02 �e−�S/k�

Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation

0.1 0.122 0.124 0.062 0.065 0.407 0.408 0.172 0.177 0.127 0.135 0.997

1.0 1.280 1.235 0.657 0.647 4.214 4.082 1.802 1.765 1.358 1.354 0.955

4.0 5.178 4.939 2.667 2.586 16.904 16.326 7.247 7.061 5.456 5.414 0.773

8.0 10.393 9.879 5.378 5.172 33.619 32.652 14.463 14.121 10.893 10.828 0.707

TABLE II. Comparison between molecular dynamics simulation and theory ��A /�B=0.5 and TA /TB=4.0�.

� �10 �01 �20 �11 �02 �e−�S/k�

Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation Theory Simulation

0.1 0.113 0.113 0.004 0.0 0.191 0.398 0.184 0.188 0.395 0.2 0.988

1.0 1.138 1.125 0.015 0.0 3.984 3.984 1.896 1.875 1.998 2.0 0.910

3.0 3.375 3.375 0.040 0.0 11.755 11.953 5.646 5.625 5.981 6.0 0.515

6.0 6.679 6.750 0.083 0.0 23.145 23.906 11.226 11.250 11.920 12.0 0.214
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f��X� = e−���X� + ��X�
e−�

2�
� �e�/�1 + iz�2

− 1�eizXdz

= e−���X� + ��X�e−�i Res�i� . �B6�

The residue of the integrandum is easily obtained by making
a Laurent expansion around z= i:

�e�/�1 + iz�2
− 1�eizX = e−X �

j=−



 
�
n=1



�− ��n

n!

�iX��2n+j�

�2n + j�!��z − i� j ,

�B7�

and so

f��X� = e−���X� + ��X�e−��+X��
n=1



�n

n!

X�2n−1�

�2n − 1�!
. �B8�

Finally, this last summation can be done explicitly in terms
of the generalized hypergeometric function 0F2 �39�:

f��X� = e−���X� + ��X�e−��+X��X0F2
�	,�3

2
,2�,

�X2

4
� .

�B9�

The final expression for Pt
A��U� is given in Eq. �37�.
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FIG. 10. Sketch of the gas near the hole. A particle with velocity
v� must be located inside the tilted cylinder with volume �v cos �dt,
in order to reach the hole during the time interval dt.
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