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Universality of Synchrony: Critical Behavior in a Discrete Model
of Stochastic Phase-Coupled Oscillators
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We present the simplest discrete model to date that leads to synchronization of stochastic phase-coupled
oscillators. In the mean field limit, the model exhibits a Hopf bifurcation and global oscillatory behavior
as coupling crosses a critical value. When coupling between units is strictly local, the model undergoes a
continuous phase transition which we characterize numerically using finite-size scaling analysis. In
particular, the onset of global synchrony is marked by signatures of the XY universality class, including
the appropriate classical exponents � and �, a lower critical dimension dlc � 2, and an upper critical
dimension duc � 4.
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FIG. 1. Three-state unit with generic transition rates g.
In the early 1960’s, experiments with the Belousov-
Zhabotinsky reaction created a sensation by showing that
dissipative structures and self-organization in systems far
from equilibrium correspond to real observable physical
phenomena. Since then, the breaking of time translational
symmetry has been a central theme in the analysis of
nonlinear nonequilibrium systems. However, in the later
studies of spatially distributed systems, most of the interest
shifted to pattern forming instabilities, and surprisingly
little attention was devoted to the question of bulk oscil-
lation and the required spatial frequency and phase syn-
chronization. On the other hand, the emergence of phase
synchronization in populations of globally coupled phase
oscillators, with the synchronous firing of fireflies as one of
the spectacular examples, did generate intense interest [1].
Because intrinsically oscillating units with slightly differ-
ent eigenfrequencies underlie the macroscopic behavior of
an extensive range of biological, chemical, and physical
systems, a great deal of literature has focused on the
mathematical principles governing the competition be-
tween individual oscillatory tendencies and synchronous
cooperation [2]. While most studies have focused on glob-
ally coupled units, leading to a mature understanding of the
mean field behavior of several models, relatively little
work has examined populations of oscillators in the locally
coupled regime [3]. The description of emergent syn-
chrony has largely been limited to small-scale and/or glob-
ally coupled deterministic systems [2], despite the fact that
the dynamics of the physical systems in question likely
reflect a combination of finite-range forces and stochastic-
ity. Two recent studies by Risler et al. [4] represent notable
exceptions to this trend. They provide analytical evidence
that locally coupled identical noisy oscillators belong to
the XY universality class, though to date there has been no
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empirical verification, numerical or otherwise, of their
predictions.

The difficulty with existing models of locally coupled
oscillators is that each is typically described by a nonlinear
differential equation, and it is notoriously computationally
intensive to deal with systems of coupled nonlinear differ-
ential equations, especially if they also involve a stochastic
component. However, following Landau theory [5], macro-
scopically observable changes occur without reference to
microscopic specifics, instead giving rise to classes of
universal behavior whose members may differ greatly at
the microscopic level. With this in mind, we construct the
simplest model with short-ranged interactions between
individual, stochastic, discrete phase units exhibiting
global phase synchrony and amenable to extensive numeri-
cal study.

Our starting point is a three-state unit [6] governed by
transition rates g (Fig. 1). Loosely speaking, we interpret
the state designation as a generalized (discrete) phase, and
the transitions between states, which we construct to be
unidirectional, as a phase change and thus an oscillation of
sorts. The probability of going from the current state i to
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state i� 1 in an infinitesimal time dt is gdt, with i �
1; 2; 3 modulo 3. For an isolated unit, the transition rate
is simply a constant (g) that sets the oscillator’s intrinsic
frequency; for many coupled units, we will allow the
transition rate to depend on the neighboring units in the
spatial grid, thereby coupling neighboring phases.

For an isolated unit we write the linear evolution equa-
tion @P�t�=@t � MP�t�, where the components Pi�t� of the
column vector P�t� � �P1�t�P2�t�P3�t��

T are the probabil-
ities of being in state i at time t, and

M �
�g 0 g
g �g 0
0 g �g

0
@

1
A: (1)

The system reaches a steady state for P�1 � P�2 � P�3 �
1=3. The transitions i! i� 1 occur with a rough period-
icity determined by g; that is, the time evolution of our
simple model qualitatively resembles that of the discre-
tized phase of a generic noisy oscillator.

The interesting behavior emerges when the transition
probability of a given unit to the state ahead depends on the
states of the unit’s nearest neighbors in a spatial grid. To
capture the physical nature of synchronization, we choose
a function which compares the phase at a given site with its
neighbors, and adjusts the phase at the given site so as to
facilitate phase coherence. With universality in mind, we
stress that the specific nature of the coupling is not impor-
tant so long as we ultimately observe a transition to global
synchrony at some finite value of the coupling parameter.
For any unit, the transition rate from state i to state j is
given by

gij � g exp
�a�Nj � Ni�

2d

�
�j;i�1; (2)

where the constant a is the coupling parameter and � is the
Kronecker delta. Nk is the number of nearest neighbors in
state k, and 2d is the total number of nearest neighbors in d
dimensional cubic lattices. While this choice is by no
means unique and these rates are somewhat distorted by
their independence of the number of nearest neighbors in
state i� 1, the form (2) is simplified by this assumption
and, as we shall see, does lead to synchronization.

To test for the emergence of global synchrony, we first
consider a mean field version of the model. In the large N
limit with all-to-all coupling we write

gij � g exp�a�Pj � Pi���j;i�1: (3)

Note that in the mean field limit gij does not depend on the
location of the unit within the lattice. Also, there is an
inherent assumption that we can replace Nk=N with Pk.
With this simplification we arrive at a nonlinear equation
for the mean field probability, @P�t�=@t � M�P�t��P�t�,
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with

M�P�t�� �
�g12 0 g31

g12 �g23 0
0 g23 �g31

0
@

1
A: (4)

Normalization allows us to eliminate P3 and obtain a
closed set of equations for P1 and P2. We can further
characterize the mean field solutions by linearizing about
the fixed point �P�1; P

�
2� � �1=3; 1=3�. The complex con-

jugate eigenvalues of the Jacobian evaluated at the fixed
point, �	 � g�2a� 3	 i

���
3
p
�=2, cross the imaginary axis

at a � 1:5, indicative of a Hopf bifurcation at this value,
which following a more detailed analysis [7] can be shown
to be supercritical. Hence, as a increases, the mean field
undergoes a qualitative change from disorder to global
oscillations, and the desired global synchrony emerges.
Numerical solutions confirm this behavior, yielding results
that agree with simulations of an all-to-all coupling array
[8]. Here we characterize the breakdown of the mean field
description for the nearest-neighbor coupling model as
spatial dimension is decreased.

We perform simulations of the locally coupled model in
continuous time on d-dimensional cubic lattices with pe-
riodic boundary conditions. Time steps are 10 to 100 times
smaller than the fastest local average transition rate, i.e.,
dt
 e�a (we set g � 1). We find that much smaller time
steps lead to essentially the same results. Starting from
random initial conditions, all simulations were run until an
apparent steady state was reached, and statistics are based
on 100 independent trials.

To characterize the emergence of phase synchrony, we
introduce the order parameter [2]

r � hRi; R �
1

N

���������
XN
j�1

ei�j

���������: (5)

Here �j is the discrete phase 2��k� 1�=3 for state k 2
f1; 2; 3g at site j. The brackets represent an average over
time in the steady state and over all independent trials.
Nonzero r in the thermodynamic limit indicates synchrony.
We also calculate the generalized susceptibility � �
Ld�hR2i � hRi2�.

In d � 2 we do not see the emergence of global oscil-
latory behavior. Instead, we observe intermittent oscilla-
tions (for very large values of a) that decrease drastically
with increasing system size. In fact, r! 0 in the thermo-
dynamic limit, even for very large values of a [8]. We
conclude that the phase transition to synchrony cannot
occur for d � 2. Interestingly, snapshots of the system
reveal increased spatial clustering as a is increased, as
well as the presence of defect structures, perhaps indicative
of Kosterlitz-Thouless-type phenomena [5]. Further stud-
ies along these lines are underway.

In contrast to the d � 2 case, which serves as the lower
critical dimension, a clear thermodynamiclike phase tran-
sition occurs in three dimensions. We see the emergence of
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global oscillatory behavior as a increases past a critical
value ac. Figure 2(a) shows the behavior of the order
parameter as a is increased for the largest system studied
(L � 80); the upper left inset shows the peak in � at a �
2:345	 0:005, thus providing an estimate of the critical
point ac. We see no change as system size is increased
beyond L � 40. At any rate, finite-size effects are within
the range of our estimation. The lower right inset in
Fig. 2(a) shows explicitly that for a < ac, r! 0 as system
size is increased, and a disordered phase persists in the
thermodynamic limit. For a > ac, the order parameter
approaches a finite value as the system size increases. We
tried to apply the Binder cumulant crossing method [9] for
determining ac more precisely, but residual finite-size
effects and statistical uncertainties in the data prevent us
from determining the crossing point with more precision
FIG. 2 (color online). (a) Onset of synchronization in d � 3.
The system size L � 80 is used. Upper left inset: Fluctuations
peak near the critical point, giving an estimation of ac �
2:345	 0:005. P1 and P2 undergo smooth temporal oscillations
for large a (upper right inset), while lower a decreases temporal
coherence (lower left inset). Lower right inset: Log-log plots of r
vs L�1 with a � 2:275; 2:3; 2:325; 2:375; 2:4; 2:425 from lowest
to highest plots. (b) Finite-size scaling analysis for d � 3 using
the XY and Ising critical exponents. Data collapse with ac �
2:345.
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than that stated above. In any case, the accuracy of our
current estimation of the critical point suffices to determine
the universality class of the transition.

To further characterize this transition, we use finite-size
scaling analysis by assuming the standard scaling

r � L��=�F��a� ac�L
1=��: (6)

Here F�x� is a scaling function that approaches a constant
as x! 0. To test our numerical data against different
universality classes we choose the appropriate critical ex-
ponents for each, recognizing that there are variations in
the reported values of these exponents [10]. For the XY
universality class we use the exponents � � 0:34 and � �
0:66 [11]. For the Ising exponents we use � � 0:31 and
� � 0:64 [12]. In Fig. 2(b), we see quite convincingly a
collapse when exponents from the XY class are used. For
FIG. 3. Transition in d � 4 (top) and d � 5 (bottom): The
order parameter near the transition point is shown for various
system sizes.� L � 4, � L � 8,  L � 12, 4 L � 16 for d �
4 and � L � 4, � L � 6,  L � 8, 4 L � 10 for d � 5. The
upper left inset in each panel shows the generalized susceptibil-
ity which peaks at a � 1:900	 0:025 for d � 4 and at a �
1:750	 0:015 for d � 5. The lower right inset shows the system
size dependence of the order parameter. For d � 4 the coupling
constant varies from a � 1:6 to 2.4 in increments of 0.1 (ex-
cluding a � 1:9) from lowest to highest plots and for d � 5 from
a � 1:4 to 2.2 in increments of 0.1.
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FIG. 4. Finite-size scaling analysis for d � 4 and d � 5: Data
collapse using ansatz (6) with mean field exponents.
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comparison, we also show the data collapse with 3D Ising
exponents (note the scale differences).

For d � 4 we estimate the transition coupling to be ac �
1:900	 0:025 from the peak in � [Fig. 3(a)]. Because we
expect d � 4 to be the upper critical dimension in accor-
dance with XY/Ising behavior, we anticipate a slight break-
down of the scaling relation (6). A priori it is not clear how
strongly (6) will be violated in d � 4. As shown in Fig. 4,
the data collapse is very good with the mean field expo-
nents. As such, our simulations suggest that d � 4 serves
as the upper critical dimension; additionally, it appears that
corrections to finite-size scaling at d � 4 are not substan-
tial, though a much more precise study would be needed to
investigate such corrections in greater detail.

To further support the claim that duc � 4, we consider
the case d � 5. We see a transition to synchrony at ac �
1:750	 0:015 [Fig. 3(b)]. As expected, this value is con-
siderably closer than the critical coupling in four dimen-
sions to the mean field value ac � 1:5. The data collapse
with the mean field exponents is excellent, as shown in
Fig. 4. We note the rarity of computations in such a high
dimension.

In conclusion, while nonequilibrium phase transitions
exhibit a much wider diversity in universality classes than
equilibrium ones [13], it is remarkable that the prototype of
a nonequilibrium transition, namely, a phase transition that
breaks the symmetry of translation in time, is described by
an equilibrium universality class. In particular, the
Mermin-Wagner theorem, stating that continuous symme-
tries can not be broken in dimension two or lower, appears
to apply. The XY model is known to display a Kosterlitz-
Thouless transition in which, beyond a critical tempera-
ture, vortex pairs can unbind into individual units creating
long range correlations. Preliminary results indicate that a
similar transition occurs in our model.

Finally, a note of caution concerning the discreteness of
the phase is in order. We first note that microscopic models
often feature discrete degrees of freedom. For example, our
14570
model is reminiscent of the triangular reaction model of
Onsager [14], on the basis of which he illustrated the
concept of detailed balance as a characterization of equi-
librium. Continuous phase models appear in a suitable
thermodynamic limit. We stress that the breaking of
time-translational symmetry can occur independently of
whether the phase is a discrete or continuous variable. It is,
however, not evident whether continuous and discrete
phase models belong to the same universality class. For
example, the three-state ferromagnetic Potts model dis-
plays a weak first order phase transition in d � 3 [15],
while the antiferromagnetic version belongs to the XY
universality class [10,16]. The results found here appear
to be compatible with the latter, but a renormalization
calculation confirming this hypothesis would be welcome.
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