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When a Brownian object interacts with noninteracting gas particles under nonequilibrium conditions,

energy dissipation associated with Brownian motion causes an additional force on the object as a

‘‘momentum transfer deficit.’’ This principle is demonstrated first by a new nonequilibrium steady state

model and then applied to several known models such as an adiabatic piston for which a simple

explanation has been lacking.

DOI: 10.1103/PhysRevLett.108.160601 PACS numbers: 05.70.Ln, 05.20.Dd, 05.40.�a

In nonequilibrium statistical mechanics the mechanical
coupling between system and environment still remains
poorly understood. In the Langevin description, the frame-
work of energetics was developed during the last decade
[1,2] but there are certainly many aspects which cannot be
grasped by such a level of description. For example, when
a Brownian object is not symmetric, such as a cone or
wedge shape, its asymmetric properties are not fully
reflected in the linear friction constant or tensor � of the
Langevin equation because � is nonpolar.

Related to this limitation, or due to our lack of compre-
hension about nonequilibrium Brownian motion, there is a
class of nonequilibrium phenomena which has refused to
be understood at a fundamental level. An interesting
example is the adiabatic piston separating two gases of
different temperatures under pressure equilibrium [3–5].
The laws of thermodynamics cannot tell whether the piston
moves or not [3]. Feynman [4] pointed out that the fluctua-
tions of the piston’s velocity should be taken into account.
However, the Langevin description with linear friction
falsely predicts zero mean velocity. The adiabatic piston
is, therefore, still listed among major unsolved thermo-
dynamics problems [6]. This difficulty is also shared by
some models of Brownian ratchet motors working between
ideal gas reservoirs [7].

A common solution to these problems is to resort to full
and general microscopic descriptions, such as the molecu-
lar dynamic (MD) simulation or master-Boltzmann equa-
tion under pertinent perturbative approximations [8].
These methods are effective in predicting the outcome.
For the adiabatic piston, the MD simulations [9] and
perturbative master-Boltzmann equation [5,9–11] give
quite consistent results showing that the piston moves
toward the hotter reservoir. For the ratchet models, the
agreement betweenMD simulation and perturbative theory
is excellent [7]. When higher order terms are taken into
account, the perturbative theories can tell the effect of the
shape of the Brownian object [7] or of the inelasticity of
collisions, called the inelastic piston [12,13], and their

combinations [14,15]. Yet, we still have no physical expla-
nation why the nonequilibrium processes give rise to a
force and what determines its direction.
In this Letter, we will develop a general theoretical

framework to answer this fundamental problem. The key
is to explicitly take into account the momentum and mass
balances under the nonequilibrium condition, in addition
to the energy balance considered by the stochastic ener-
getics [2]. Briefly, the nonequilibrium energy transfer, or
dissipation, leads to a deficiency in the momentum transfer
from the environment to the Brownian object, while the gas
particle (mass) flux is unchanged by the dissipation. We
shall call this deficiency the momentum transfer deficit due
to dissipation or MDD, for short. We will show that this
MDD is expressed as a form of a nonequilibrium boundary
condition for the momentum flow [Eq. (1) below]. With
this condition, many nonequilibrium problems, which have
been hitherto solved case-by-case, can be explained in a
unified manner sometimes even at the semiquantitative
level.
In the following, we first describe the basic principle. To

demonstrate the principle we introduce a simple nonequi-
librium steady state (NESS) model and its solution. Then,
we will apply the basic principle to unexplained problems
such as an adiabatic piston in order to show the universality
of underlying physics. We extend our principle to include
the weak inelasticity of collisions between the Brownian
object and gas particles.
In the elementary setup, Fig. 1(a), an ideal gas of

temperature T and pressure p fills to the left of the
wall. The wall is a Brownian object and its velocity
fluctuates. However, it macroscopically remains at rest.
The collisions of the gas particles with the wall strictly
satisfy the momentum conservation but can be either
elastic or inelastic. We assume that the energy transfer
by individual collision is very small so that the double
collision by the wall with the same gas particle is negli-
gible. More specifically, the mass of the wall M and that
of gas particles m are assumed to satisfy �2 � m=M � 1.
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Our interest is the force exerted on the wall by the gas or
equivalently the momentum transfer from the gas to the
wall. We separate this momentum transfer into two parts:
one due to the incoming particles toward the wallP

mvin, and the other to the outgoing particles from the
wall

Pð�mvoutÞ, where the sum is taken over a unit time.
The sum of the two momentum fluxes gives the force on
the wall.

When the wall’s microscopic fluctuations are thermally
in equilibrium with the gas [Fig. 1(a) (left)], the detailed
balance condition indicates that two momentum fluxes
should be equal on the time average, and the sum of the
two is the hydrostatic pressure p times the surface area L.
Note that, unlike a simple kinetic theory used in elemen-
tary textbooks, the individual collisions can transfer energy
between the gas and the wall at the microscopic level since
the wall fluctuates. It is the detailed balance that makes
the two momentum fluxes identical on the average. On the
other hand, when the dissipation carries away a part of the
kinetic energy of the gas upon collision to the outside of

the system at the rate of JðeÞdiss per unit time [Fig. 1(a)

(right)], the speed of the outgoing particles is, on the
average, less than that of the incoming ones. Therefore,
the momentum transfer by outgoing flux

Pð�mvoutÞ
should be less than the incoming one

P
mvin, which should

not be influenced by the dissipation as long as the double
collisions are negligible. This reduction in momentum
transfer is the MDD, and the resulting force on the wall
is less than that in the equilibrium by the MDD. This

additional force due to MDD is exactly the point where
the Langevin equation with linear friction fails to grasp the
left-right asymmetry of the system.
To make this principle more concrete and quantitative,

we first assume elastic collisions between gas particles and

the wall. We take the thermal velocity vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
as a

typical normal component of the velocity of incoming
particles vin up to a numerical factor (see below). The first
part of the momentum transfer is

P
mvin ’ mvth!col,

where !col ’ �Lvth=2 is the collision frequency on the
wall. We denote by v0ð<0Þ the typical normal component
of the outgoing velocities vout. The second part of the
momentum transfer is then

Pð�mvoutÞ ’ mjv0j!col. The
conservation of mass fluxes imposed the common fre-
quency !col for both incoming and outgoing fluxes.
Now v0 is related to vth though the energy balance

condition, m
2 v

2
th � m

2 v
02 ’ JðeÞ

diss

!col
. Here, we assumed that the

parallel component of the velocity does not contribute
to the energy loss. Noting jv0j ’ vth for weak energy
transfer, the left-hand side can be approximated
by vthðmvth �mjv0jÞ. Then the MDD par unit time is

ðmvth �mjv0jÞ!col ’ JðeÞ
diss

vth
, and the net force on the wall is

F ¼ Feq þ FMDD; FMDD ’ �c
JðeÞdiss

vth

; (1)

where Feq ¼ pL is equilibrium hydrostatic force and the

numerical constant c is 1 in the above semiquantitative
derivation. From the view of the gas, Eq. (1) can be
considered as a boundary condition for the momentum
flux. This additional force FMDD induced by dissipation
is the main result of the present Letter.
An interesting realization of MDD, which is also a new

model of NESS, is illustrated in Fig. 1(b). In two dimen-
sions, a piston with a smooth vertical wall as a Brownian
object is in contact with a gas of temperature T and
pressure p. Its horizontal motion is tightly coupled to
another object (rhombus) immersed in a different gas
environment of temperature T0. We can show that when
the horizontal diagonal ‘k and vertical diagonal ‘? of the

rhombus are made indefinitely large, keeping ‘1 � 2‘2?=‘k
constant, the collisional forces from the second gas
converges to the ordinary force of the Langevin equ-
ation, which is the frictional ��0V and random

force
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0kBT0p

�t, with the friction constant �0 ¼ffiffiffiffiffiffiffiffiffi
�=8

p
�‘1mvth (� ¼ p=kBT) and Gaussian white noise

�t with h�t�t0 i ¼ �ðt� t0Þ [16]. Therefore, for T0 < T,
the thermal contact dissipates energy to the second gas
without the net transport of momentum between the two
gases on the time average.

For weak dissipation, the dissipation rate JðeÞdiss depends

on the coupling with the environment only through the
friction constants � with the first gas and the aforemen-
tioned �0 with the second gas:

FIG. 1 (color online). (a) When the mean velocity of the piston
�V is zero, the net momentum transfer by the incoming particles,P
mvin, and by the outgoing particles,

Pð�mvoutÞ, per unit time
sum up to give the force on the piston.Left: Equilibrium state
where no net energy is transferred to the piston.
Right: Nonequilibrium case where the energy is dissipated at a

rate JðeÞdiss. When JðeÞdiss > 0½<0�, additional force FMDD < 0½>0� is
exerted on the piston. (b) Cooled or warmed Brownian piston:
The piston (thick bar) and object (diamond) are tightly bound
and are held by a spring. The gas environments have tempera-
tures T and T0 and pressures p and p0, respectively.

PRL 108, 160601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

20 APRIL 2012

160601-2



JðeÞdiss ¼
kBT � kBT

0

Mð��1 þ �0�1Þ : (2)

For later use, we here show a heuristic derivation of Eq. (2).
Assuming a kinetic temperature of Brownian motion,

kBTkin, we can construct dimensionally JðeÞdiss by the time

constant M=� and the temperature gap, kBT � kBTkin, as

JðeÞdiss ¼ ð�=MÞðkBT � kBTkinÞ. Applying the same argu-

ment for the second bath, i.e., JðeÞdiss ¼ �ð�0=MÞ�
ðkBT0 � kBTkinÞ, and eliminating Tkin, we obtain Eq. (2).
For the standard derivation, see Ref. [2]. The linear fric-
tion, � ¼ c0�Lmvth, can be also obtained heuristically
by a Doppler shift of the momentum transfer, where

c0 ¼ ffiffiffiffiffiffiffiffiffi
8=�

p
from the standard gas kinetics.

Now substituting Eq. (2) into (1) we have a concrete
form of MDD and the force in nonequilibrium. We can
show that the microscopic approach with the master-
Boltzmann equation gives exactly the same result if we

choose c ¼ ffiffiffiffiffiffiffiffiffi
�=8

p
. When the wall is ‘‘cooled,’’ i.e., for

T0 < T, the mean position of the wall in NESS is displaced
leftwards relative to its equilibrium position, and vice
versa.

The principle (2) is also applicable to the case where the
collision is weakly inelastic. In Fig. 1(b) we remove the
rhombus and the second gas environment, and instead
assume the restitution coefficient e (1� e � 1) for the
collision between the gas particles and the vertical wall. In
this case, the dissipation rate consists of two parts:

JðeÞdiss ¼ JðeÞdiss;hk þ JðeÞdiss;ex: (3)

The ‘‘house-keeping’’ heat generation [17], JðeÞdiss;hk, is due

to the inelasticity of individual collisions. The ‘‘excess’’

dissipation JðeÞdiss;ex is due intrinsically to the nonequilibrium

Brownian motion of the wall. If the wall were rigidly fixed,

only JðeÞdiss;hk is nonzero. In this case the dissipation per

collision is mv2
th=2�mv02=2 ¼ ð1� e2Þmv2

th=2 and

JðeÞdiss;hk ¼ ð1� e2Þmv2
th=2�!col. Noting ð1� e2Þ ’

2ð1� eÞ, the same argument leading to Eq. (1) gives

FMDD’FMDD;hk�c
JðeÞdiss;ex

vth

; FMDD;hk¼�1�e

2
pL; (4)

where FMDD;hk is force due to the house-keeping MDD,

which reduces the force even for a fixed wall. (A sand bag
will receive less impact than a hard wall by a bullet.)

The excess dissipation is expressed in terms of the

aforementioned kinetic temperature, kBTkin as JðeÞdiss;ex ¼
ðM=�ÞðkBT � kBTkinÞ. Upon a binary inelastic collision,
the velocity of a Brownian object changes in the same way
as that of an elastic collision if the effective mass Meff �
2M=ð1þ eÞ is used. The Brownian object then obeys

approximately the Maxwell distribution / e�MeffV
2=ð2kBTÞ.

It implies kBTkin ¼ kBT � ð1þ eÞ=2 Therefore,

JðeÞdiss;ex ¼
�

M

1� e

2
kBT; (5)

where the friction constant � is the same as before in
the lowest order in (1� e). With the numerical factor

c ¼ ffiffiffiffiffiffiffiffiffi
�=8

p
, we recover the microscopic result. When the

dominant house-keeping MDD is canceled by the same
MDD from the other sides, as for an inelastic triangular
Brownian object [14], it is the excess MDD that explains
the origin of nonequilibrium force.
We have shown that our simple calculation gives the

identical result as microscopic approaches up to a numeri-
cal factor of order one. We note that the microscopic
approach is still needed to find the correct numerical factor
for the Brownian object of complicated geometry and to
find higher order corrections to the perturbation. However,
our main goal is, rather, to show that the principle (1) is a
general theory of the force under nonequilibrium condi-
tions. Below, we will apply the basic schema, Fig. 1, to
various known cases and show how our principle, based on
the conserved quantities, is fundamental to understand the
phenomena.
Adiabatic piston (with elastic wall) [5,9–11].—We

apply the boundary conditions (1) to the both sides of the
piston shown in Fig. 2(a), with an appropriate sign of the
forces and dissipation rates, and also take account of differ-
ent temperatures. By the isobaric condition, the equilib-
rium force Feq on both sides cancels. On the side of

temperature T0, the force F0
MDD should contain the dissi-

pation rate JðeÞ0diss ¼ �JðeÞdiss to assure the energy conservation.

Both FMDD and F0
MDD are oriented toward the hot side

(leftward if T > T0), and the total momentum balance
about the piston is recovered by the frictional force,
FMDD þ F0

MDD � ð�þ �0Þ �V ¼ 0, where �V is the steady
state velocity of the piston. Combining with Eqs. (1) and
(2) the steady state velocity reads

�V ¼ � c

�þ �0

�
1

vth

þ 1

v0
th

�
kBT � kBT

0

Mð��1 þ �0�1Þ ; (6)

FIG. 2 (color online). (a) A microscopic ‘‘adiabatic’’ piston of
mass M (vertical bar) separates two semi-infinite gases of point-
like particles with mass mð� MÞ. The two gases have the same
pressure p but different temperatures, T and T0. (b) A macro-
scopic inelastic piston with restitution coefficients, e (left sur-
face) and e0 (right surface), is in a gas.
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which is identical to the result obtained from the perturba-

tive calculation in [10] with c ¼ ffiffiffiffiffiffiffiffiffi
�=8

p
. (p ¼ �kBT is

assumed to verify it.) The correction to dissipation due to
the ‘‘mesoscopic loss’’ ð�þ �0Þ �V2 is of a higher order by
�2 and, therefore, negligible. This remark applies to all
other examples below.

Inelastic piston[12,13].—A piston of two inelastic faces,
shown in Fig. 2(b), is in a gas of temperature T and
pressure p, and the faces have coefficients of restitution
e (left face) and e0 (right face), respectively, with 1� e �
1 and 1� e0 � 1. The dissipation rate JðeÞdiss, MDD and

FMDD, on each face satisfy Eq. (1). But the MDD on the
two faces has different signs, and thus the net force
arises only when e � e0, as FMDDjleft þ FMDDjright ¼ ðe�
e0ÞpL=2. By balancing with the frictional force, the
stationary velocity �V to the lowest order in 1� e and
1� e0 (therefore je� e0j � 1) and in � is

�V ¼ 1

�þ �0
e� e0

2
pL ¼ � e� e0

4c0
vth; (7)

where � ’ �0 ¼ c0�Lmvth with c0 a constant. The result
(7) agrees with the perturbative results [12,13] with

c0 ¼ ffiffiffiffiffiffiffiffiffi
8=�

p
. This elementary example shows, however,

that our principal formula (1) is universal whether or not
the origin of dissipation is kinematical or dynamical,
because the momentum conservation is universally valid.

Ratchet model in two gas environments.—Van den
Broeck et al. [7] proposed and analyzed a series of
Brownian ratchet models that move horizontally in contact
with two ideal gas environments at different temperatures
T and T0. One typical example is shown in Fig. 3 (top),
where we assumed isobaric condition only to simplify the
argument without losing the essential point. Microscopic
methods concluded that it moves steadily with the base of
the triangle in a hotter environment that is ahead, i.e.,
leftwards if T > T0. Based on our principle, the origin of
the nonequilibrium force is essentially the same as the
aforementioned adiabatic piston. Intuitively, if we look at
only the bases of triangles, it already appears identical to
the adiabatic piston, Fig. 3 (bottom). In fact, the sides of the

triangle receive more frequent collisions than on the base
but with much less impact on the horizontal motion. We
can rigorously show that in the limit of � ! 0 (see Fig. 3),
the momentum transfer rate on the sides converges to the
equilibrium force pL without fluctuation or frictional
velocity dependence [16]. Therefore, in this limit, the
effect of the side surface vanishes and the same principle
as the adiabatic piston determines the motion of the ratchet
model. The result agrees with their perturbative calcul-
ation [7].
Inelastic triangle—Costantini et al.[12] studied a vari-

ant of the above ratchet model using a single triangle but
with the inelastic surface of a restitution constant e. In this
case, the net house-keeping component vanishes, as if the
triangle is in a hydrostatic pressure, ð1þ eÞp=2. On the

other hand, the excess dissipation JðeÞdiss;ex on the side sur-

faces are less important than that on the base, in the way
that the contribution by the side surfaces vanishes in the
limit � ! 0. In this limit, the force balance with frictional
drag �� �V and Eq. (5) yields

�V ¼ � c

M

1� e

2vth

kBT: (8)

This result is identical to the one obtained by the micro-
scopic approach [12] to the lowest order in 1� e, if we

choose c ¼ ffiffiffiffiffiffiffiffiffi
�=8

p
.

In summary, we have introduced a unified theory on the
generation of nonequilibrium force as a momentum trans-
fer deficit due to dissipation. This principle is applied to a
new model of NESS, named, cooled or warmed piston, as
well as to many existing models such as an adiabatic piston
in a unified manner. What we clarified here is that, while
the energetics at the Langevin level [2] is enough to treat
the dissipation, the dissipation attributed to Brownian
motion plays a decisive role [4] in the force generation
through the MDD. As perspectives, the MDD should be
taken as incorporated in the hydrodynamic description of
the adiabatic piston [18]. It is of interest to generalize the
present results to interacting gas particles, for example,
the boundary thermostats [19], as well as to the contact
value theorem [20] under nonequilibrium.
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