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1. Introduction

Since the 1920s a simple question associated to non-equilibrium statis-
tical physics has been addressed: If we put a Brownian piston of mass M
between the two semi-infinite cylinders each being filled with an ideal gas
consisting of particles with mass m(� M), what is the non-equilibrium
steady state? Here, the temperature and pressure of the gas in the left cylin-
der are prepared at (T, p), while those in the right cylinder are at (T ′, p).
The surface area of the piston is the same on both sides. It is clear that,
if the piston were firmly fixed and if the piston was “adiabatic”, then there
would be no net force on the piston because the gas in each cylinder re-
mains in equilibrium and presses the piston by the same pressure but in the
opposing directions. When the Brownian motion of this adiabatic piston is
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allowed, however, this motion will allow the energy transfer from the hot-
ter gas (e.g. the side of T if T > T ′) to the colder gas (ibid. T ′) [1]. The
question is, if this non-equilibrium process leads to a non-vanishing net force
on the piston. The macroscopic thermodynamics cannot answer this type
of question [2], neither the Langevin description can give an answer to this
type of setup [3]. While the stochastic energetics [4, 5] can describe correctly
the heat flow, the non-equilibrium force is beyond the resolution of this level
of description.

Many calculative studies have been reported in the past both on this
problem and also on a class of Brownian ratchet models, which turned out
to be essentially the same problem as adiabatic piston [6]. All these studies
have been done using either ad hoc treatment of master Boltzmann equations
with truncated moment hierarchical expansion with ε =

√
m/M as small

parameter, or by molecular dynamics (MD) simulations, see the references
cited in [6]. Both the perturbative approach and the MD simulation consis-
tently concluded that the Brownian piston will move steadily towards the
hotter gas. Nevertheless, a clear physical understanding was missing. A fre-
quently given hand-waving argument was that the hotter side losing the heat
has locally lower pressure. But it is not a valid argument. If the ideal gas is
used, the cooled particle will never hit again the Brownian piston, while the
freshly colliding particles are characterized by the equilibrium parameters,
(T, p) or (T ′, p). The adiabatic piston has, therefore, remained among “Some
problems in statistical mechanics that I would like to see solved” [7].

It is only very recently [6] that the physical explanation to the above
question was definitely given. The key is to take into account the interplay
between the energy transfer and the momentum transfer at the gas–piston
interfaces. Once this point is understood, the results of elaborated pertur-
bative calculations could be perfectly reproduced just by a few lines’ calcu-
lations, except for an overall numerical factor. The purpose of the present
paper is to summary the basic idea and discuss its generalization. The or-
ganization of the paper is the following: In the next section, we recapitulate
the main line of this mechanism. Especially, the key concept of the momen-
tum transfer deficit due to dissipation (MDD) is explained using a simple
argument. The relation to the traditional calculative approach is also men-
tioned. As a prologue to the extension to the dense gas case, we introduce
in Sec. 3.2 a toy model that shows how the energy flow and momentum flow
having different symmetry in space and time can make the uniform pressure
and the heat conduction compatible. In Sec. 3.3, we show the implication
of the MDD to the non-equilibrium hydrodynamics of dense hard-core gas.
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2. Review of the physics of adiabatic piston

We outline the concept of MDD as the underlining mechanism of the
adiabatic piston. The Readers might refer to [6, 8] for the technical details
and its generalization to inelastic case.

The essential point of the adiabatic piston is more clearly grasped when
the Brownian piston separating the ideal gases is trapped by a potential
force such as an elastic spring (Fig. 1) so that the mean velocity of the
piston vanishes (〈V 〉 = 0). If there appears a non-equilibrium force FNESS

on this trapped Brownian piston, the steady state velocity 〈V 〉 of the piston
in the absence of trapping is given by the balance with the passive frictional
force, FNESS− (γ + γ′)〈V 〉 = 0, where γ and γ′ are the friction coefficient of
the Brownian piston against the respective gas.

T, p T’, p

Fig. 1. Trapped adiabatic piston.

The first step is to realize that the Brownian motion of the piston serves
merely as the mediator of the energy transfer, or heat, from hotter gas to the
cooler gas. While correlation between collisions with the piston by the hot
gas particles and by the cold gas particles are essential for the irreversibility
of this purely mechanical problem, we can bypass all the details for the
purpose of understanding the non-equilibrium force FNESS. The rate of the
energy transfer per unit surface of the piston, j(e) can be found using the
stochastic energetics [5] or even by a heuristic argument [9]. The result reads
j(e) = (kBT − kBT ′)/[M(γ̃−1 + γ̃′−1)], where γ̃ = γ/A and γ̃′ = γ′/A, with
A being the area of each piston surface.

Once we know the energy transfer rate across the gas–piston interface,
we can concentrate on the following problem: When an ideal gas prepared
in the equilibrium characterized by (T, p) is brought into contact with the
wall that absorbs (or injects) energy at the rate j(e) per unit surface (Fig. 2),
how the pressure on the wall is modified from p? Consider that gas particles
with a typical velocity component normal to the wall v⊥in collides the energy-
transferring wall. They are reflected back with a velocity v⊥out. While the typ-
ical incoming velocity should be the thermal velocity v⊥in = vth =

√
kBT/m,

except for the numerical factor, the typical outgoing velocity depends on
the energy transfer rate j(e) and the collision rate νcol per unit area on the
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energy-transferring wall through the energy balance condition

j(e)

νcol
=
m

2
v⊥in

2 − m

2
v⊥out

2
=
m

2
vth

2 − m

2
v⊥out

2
.

Assuming that the energy transfer is sufficiently small, the right-hand side
(r.h.s.) of the above equation is approximated as(

mv⊥in −m|v⊥out|
) v⊥in + |v⊥out|

2
'
(
mv⊥in −m|v⊥out|

)
vth .

Substituting this result into the above equation, we find(
mv⊥in −m|v⊥out|

)
νcol '

j(e)

vth
. (1)

The left-hand side (l.h.s.) of this relation gives the momentum transfer
deficit due to dissipation (MDD). In other words, upon the collision, the
gas particles kicks the wall less strongly in non-equilibrium than equilibrium
if a part of their incoming kinetic energy was taken out by the energy-
transferring wall. In terms of the net momentum transfer rate per unit
surface, j(p)⊥⊥ = νcol(mvth + |v⊥out|), the equilibrium value, p = 2mvthνcol,
is corrected by this MDD to give

j(p)⊥⊥ = p− j(e)

vth
.

(0)

T (  )x p
’

ρ

j
(e)

neq

Fig. 2. Gas in contact with an energy-transferring wall at x = 0. The contact
density is denoted by ρ(0). In general, the effective temperature Tneq(x) should
depend on the position x.
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In retrospect, the traditional approach through the master Boltzmann
equation could have given the same insight. For the setup of Fig. 2, this
equation can be written as follows

∂tP (X,V, t) = −V ∂XP (X,V, t)− [−γbV − ∂XU(X)]∂V P (X,V, t)

−
∫
V ′

W
(
V ′|V

)
P (X,V, t) +

∫
V ′

W
(
V |V ′

)
P
(
X,V ′, t

)
+
kBT b

γb
∂2XP (X,V, t) ,

where P (X,V, t) is the probability density of the position X and velocity V
of the wall as a Brownian piston, and U(X) represents the trapping potential
energy. The heat absorption by the wall is modeled by the coupling to a
Langevin bath [5] at the temperature Tb with the coupling, i.e. friction,
constant γb. The collision of the gas particles is represented by the velocity
transition rate, W (V ′|V ), given by

W (V ′|V )dV ′dt =

H
(
v⊥ − V

)
× ρA

(
v⊥ − V

)
dt

√
m

2πkBT
e
− m

2kBT
v⊥

2
(
m+M

2m

)
dV ′ ,

where A is the surface area of the wall, v⊥ is the normal component of
the incoming velocity of gas particle, and H(z) is the Heaviside unit step
function. v⊥ is the function of wall’s velocities before (V ) and after (V ′) the
collision, respectively, through the momentum conservation rule,

V ′ = V +
2m

m+M

(
v⊥ − V

)
.

The truncated equations for the first two moments of V can be derived from
the above master Boltzmann equation, and the results read

M
d〈V 〉
dt

= −
〈
U ′(X)

〉
− (γ + γb)〈V 〉+

(
p− cj

(e)

vth

)
A ,

M
d
〈
V 2
〉

dt
= −

〈
V U ′(X)

〉
− γ

M

[〈
V 2
〉
−kBT

]
− γb
M

[〈
V 2
〉
−kBT b

]
+ c′ 〈V 〉 ,

(2)

where c =
√
π/8 and the other constant c′ is irrelevant as we shall see

immediately below. In the steady state, not only 〈V 〉 = d/dt = 0 but also
〈V U ′(X)〉 vanishes. Then the second moment equation tells that the kinetic
temperature of the Brownian piston, kBTkin ≡ M〈V 2〉, is given by the well
known formula of Langevin dynamics

kBT kin =
γkBT + γbkBT b

γ + γb
.
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Moreover, the second and the third terms on the r.h.s. of the second moment
equation give the energy transfer to [from] the wall, respectively

j(e) = − γ

M

[〈
V 2
〉
− kBT

]
=
γb
M

[〈
V 2
〉
− kBT b

]
.

With j(e) thus known, the first moment equation in the steady state is
nothing but the momentum balance condition

−
〈
U ′(X)

〉
+

(
p− cj

(e)

vth

)
A = 0 .

Our physical reasoning, therefore, reproduces completely the traditional re-
sult except for the numerical factor c. Moreover, our explanation allows
to treat the adiabatic piston, Brownian ratchet models [3], or inelastic pis-
ton [10] on the same footing [6].

3. Momentum transfer of a gas with heat transport

3.1. Preliminary argument

The mean free path `map of an ideal gas is infinite because the particles
undergo no collisions. Knudsen number Kn ≡ `map/Lsys is, therefore, infi-
nite with any system size, Lsys. The macroscopic thermo-hydrodynamics [11]
supposes the opposite limit, Kn� 1. When we study the thermo-hydrody-
namics with energy-transferring boundaries, the physical ideas obtained in
the previous section should, therefore, be applicable only to the vicinities of
those walls probably with some modifications. The main question is how to
reconcile the formula Eq. (1) for the ideal gas with the macroscopic descrip-
tion of thermo-hydrodynamics with non-equilibrium boundary condition.
In this paper, we limit ourselves to the steady states with vanishing macro-
scopic velocity of the gas. The conservation laws of mass, momentum and
energy then impose the constancy of those fluxes. Below, we study first by
a purely mechanical toy model that shows the basic compatibility between
these fluxes and their nature of symmetry in space and in time (Sec. 3.2).
Then we go onto the dense hard-core gas with Kn� 1 (Sec. 3.3).

3.2. Toy model

We begin by a very elementary kinetic model to discuss the interplay
of the energy and momentum transfer1. We take up a single gas particle
on the x-axis bounded by the energy-transferring walls at x = 0 and at
x = Lsys, which are macroscopically fixed in space, see Fig. 3. We further

1 This is a simplified version of Knudssen heat transfer, see, for example, [12], p. 25.
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simplify that the hot wall (on the left) receives the particle of velocity −v−
and returns with the velocity v+ with 0 < v− < v+. The cold wall (on the
right) does the opposite operation. The microscopic mechanism underlying
these reflections are irrelevant for our argument. (One might imagine the
two tennis players engaging in a rally.)

x

sysL0

time

Fig. 3. Space (x)-time trajectory of a particle between the hot (x = 0) and cold
(x = Lsys) walls.

Before counting the momentum and energy flux, j(e) and j(p), we impose
the vanishing of the mass flux, j(m) in the steady state

j(m) = (ρ+mv+ − ρ−mv−)x̂ = 0 .

This is satisfied by the densities of rightward and leftward particle, respec-
tively

ρ± =
v∓

(v+ + v−)Lsys
.

Also the collision frequency on each wall, νcol, is found to be

νcol =
v+v−

(v+ + v−)Lsys
.

With this νcol, the energy transfer rate j(e) is

j(e) =
m

2

(
v2+ − v2−

) v+v−
(v+ + v−)Lsys

x̂ =
m

2
(v+ − v−)

v+v−
Lsys

x̂ ,

while the momentum flux j(p) reads

j(p) = m(v+ + v−)
v+v−

(v+ + v−)Lsys
x̂x̂ = m

v+v−
Lsys

x̂x̂ .
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We verify that j(e) is odd under time or space-inversion, while j(p) is even
under these operation. The symmetry of j(p) can also be seen from Fig. 3.
This model, although simple, shows how the directed energy transfer is
established without gradient of momentum flux. In other words, the pressure
on the hot and cold walls are the same.

To see more in detail the process at the walls, we refer to the contact value
theorem, p = kBTρ(0) [13], which give the equilibrium momentum transfer
to a hard wall by a hard core gas in terms of the equilibrium temperature T
and the gas particle density at the closest contact surface of the hard wall.
Our interest is the case with energy-transferring walls, see Fig. 2. When the
walls transfer the energy, the p should indicate the total momentum flux
j(p), i.e.,

pneq =
∣∣∣j(p)∣∣∣ = m(v+ + v−)νcol

and kBT neq/2 the kinetic energy per particle,

kBT neq

2
=
m

2

ρ+v+
2 + ρ−v−

2

ρ+ + ρ−
=
m

2
v+v− .

Since the total density ρ(0) on the wall is, by the homogeneity,

ρ(0) =

(
1

v+
+

1

v−

)
νcol =

1

Lsys

we arrive at a form of the contact value theorem in non-equilibrium

pneq = kBT neq ρ(0) . (3)

In other words, while the symmetry allows the correction to the r.h.s. of
the form ∝ (v+− v−)2 or ∝ j(e)2, the contact value theorem holds up to the
order of O(j(e)2) if pneq and Tneq are appropriately chosen (cf. [14]).

3.3. Non-equilibrium hydrodynamics

In the non-equilibrium steady state with heat flux of a dense hard-core
gas with Kn � 1, the energy flux vector field, j(e), and momentum flux
tensor field, j(p), must satisfy the basic conservation laws

∇ · j(e) = 0 , ∇ · j(p) = 0 .

If the wall is perpendicular to the x-axis, the system is homogeneous in y
and z directions and the above conditions are reduces to

j(e)x = const. , j(p)xx = const.
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If the heat conduction obeys approximately the Fourier’s law, j(e) = kT∇T ,
with kT being the heat conductivity, the temperature gradient keeps con-
stancy of the energy flux. As for the momentum flux j(p), the symmetry
argument or the Curie principle [15] allows the anisotropy of the type
j(p) = p1 + a(x̂x̂ − 1

31) with a characterizing the deviatoric part of the
flux due to heat flux ‖x. However, seeing that the O(j(e)2) contribution was
missing in the above simple model Eq. (3), we simply identify j(p) = pneq1 to
be the pressure in the present approximation. If pneq obeys approximately
the equilibrium equation of state, p = p(ρ, T ), among the pressure p, tem-
perature T and the density ρ, the density ρ(x) varies in a manner locally
compensating the heterogeneity of the temperature T (x) so that the pneq
remains homogeneous.

Our concern is how we can relate the momentum flux and the energy
flux in the dense hard-core gas, where pneq reflects already both the incom-
ing and outgoing particles. Below, we will indicate that the relation like
Eq. (1) corresponds to the skewness of the velocity distribution of parti-
cles (especially) at the energy-transferring wall. To be concrete, we imagine
the dense hard-core gas which is conducting the heat rightwards up to the
energy-transferring wall at x = 0 without convection (Fig. 2). We also as-
sume that the wall exchanges only the x-component of momentum. Now,
we introduce the velocity distribution function f(vx;x) per unit volume of
gas particles. Then the particle density ρ(x) is given by

ρ(x) =

∫
f(vx;x)dvx .

The conditions on the fluxes of mass, momentum and energy along the x
axis are given, respectively, as

0 = j(m)(x) · x̂ =

∫
mvxf(vx;x)dvx ,

pneq = x̂ · j(p)(x) · x̂ =

∫
mv2xf(vx;x)dvx ,

j(e) = j(e)(x) · x̂ =

∫
m

2
v3xf(vx;x)dvx , (4)

where pneq and j(e) are independent of the position x.
Now, we focus on the thin slab of the distance � `mfp from the energy-

transferring wall. In this slab, we assume that the gas particles undergo
practically no collisions except for with the wall. We introduce the par-
tial momentum fluxes associated to the incoming particles, j(p)in and to the
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outgoing particles, j(p)out, right before the wall

j
(p)
in

∣∣∣
x=0−

≡
∫
mv2xH(+vx)f(vx;x)dvx ,

j
(p)
out

∣∣∣
x=0−

≡
∫
mv2xH(−vx)f(vx;x)dvx .

In equilibrium where f(vx;x) are symmetric with respect to vx, the both
partial fluxes are the same. In the presence of the heat flux, it is no more the
case. While the asymmetric velocity distribution for Knudsen heat transfer,
i.e. the above toy model, is usually singular and far from the Maxwellian,
the collisions make the velocity distribution look like skewed Maxwell dis-
tribution. We, therefore, assume an approximate form2

f(vx;x)|x=0− =

[
c0 + c1

(vx
σ

)
+ c2

(vx
σ

)2
+ c3

(vx
σ

)3]
e−

vx
2

2σ2 .

For a week energy flux, the terms containing c1, c2 and c3 are regarded to
be small perturbations with respect to the main term c0. The expression of
the density and the flux conditions mentioned above impose

ρ|x=0−√
2π

= (c0 + c2)σ ,

0 = c1 + 3c3 ,
pneq√
2πm

= (c0 + 3c2)σ
3 ,

2j(e)

3
√
2πm

= (c1 + 5c3)σ
5 = 2c3σ

5 ,

where, in the last line, we used the vanishing mass flux condition in the sec-
ond line; c1 = −3c3. Finally, the difference between the partial momentum
fluxes j(p)in and j(p)out reads(

j
(p)
in − j

(p)
out

)
|x=0−

2m
= (c1 + 4c3)σ

4 = c3σ
4 ,

where, again, we used the vanishing mass flux condition. Then, if we in-
troduce the squared average of the particle velocity (noting |c2|/c0 � 1 for
weak non-equilibrium)

v2x|x=0− =
pneq
ρ|x=0−

=
1 + 3c2/c0
1 + c2/c0

σ2 ' σ2 ,

2 On the wall, x = 0, the very MDD implies the discontinuity in f(vx;x) at vx = 0.
Here, however, we shall use a smoothed form as qualitative model. See also, for
example, [12], p. 202.
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we obtain the relation of MDD and the energy flux, reminiscent of Eq. (1)(
j
(p)
in − j

(p)
out

)∣∣∣
x=0−

= C
j(e)[

v2x|x=0−

]1/2
with a numerical factor C =

√
2/(3
√
π), which is subject to our approxima-

tions.
In conclusion, the dense hard-core gas conducting the heat carries also

momentum through the asymmetric distribution of particle’s velocity, and
the concept of MDD is a neat way to explain the relation between the energy
flux and the partial momentum fluxes in the non-equilibrium steady state.

We would like to acknowledge the Organizers of the 25th Marian Smolu-
chowski Symposium.
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