Einselection and Quantum Thermodynamics of Small Systems Strongly Interacting with Environments

Ryoichi Kawai

Ketan Goyal (Student)

Department of Physics University of Alabama at Birmingham

NORDITA, September 14, 2017

RALF EICHHORN,

"Let us remind you that the program is intended to discuss open questions and new ideas in a lively atmosphere. Accordingly, we would prefer talks on such open questions,

but overviews of past work and/or historical perspectives are also welcome."

Contents

- Motivation
- Review of Quantum Measurement theory, Decoherence and Eigenselection
- · A couple of Claims
- Review of Open Quantum Systems
- · Model
- Theoretical/Computational Methods
- Thermalization
- Heat Conduction
- · Autonomous Quantum Heat Engine
- \cdot Conclusions

Thermalization and Decoherence in Energy Eigenbasis

Thermalization:
$$ho_0 \implies
ho_{\rm G} = \frac{1}{Z} e^{-\beta H}$$
 (Gibbs state)

Gibbs state is very special.

- Diagonal in the energy eigenbasis
- Decoherence in the energy eigenbasis
- Decoherence is induced by the environment
- Why and how does the environment select the energy eigenbasis?
- Does it have to be the energy eigenbasis?
- If not, what else is possible?
- In what basis decoherence happens in non-equilibrium steady state?

Quantum Measurement Postulate (Projective Measurement)

 $\begin{array}{ll} \mbox{Collapse of wavefunction} \\ \mbox{before measurement} & \mbox{after measurement} \\ \rho_{<} = \sum_{ij} c_i c_j^* \left| \omega_i \right\rangle \! \langle \omega_j \right| & \Rightarrow & \rho_{>} = \sum_i \left| c_i \right|^2 \left| \omega_i \right\rangle \! \langle \omega_i \right| = \sum_i \left| \omega_i \right\rangle \! \langle \omega_i \right| \rho_{<} \left| \omega_i \right\rangle \! \langle \omega_i \right| \\ \mbox{measurement} \end{array}$

Decoherence in Observable Basis

- Decoherence happens for different basis depending on what you measure.
- If the decoherence is induced by the environment, how does the environment know what you measure?

von Neumann - Everett Theory of measurement.

J. von Neumann (1955), H. Everett III (1957)

Environment-induced Decoherence

Environment picks pointer states and induces decoherence among pointer states.

Why is the pointer state? $\rightarrow V_{AE}$ picks the pointer state.

When \hat{V}_{AE} is dominant, the pointer states are determined by:

$$\left[\hat{\Pi} \otimes I^{\mathrm{E}}, \hat{V}_{\mathrm{AE}}\right] = 0 \qquad \qquad \hat{\Pi} |\pi_i\rangle = \pi_i |\pi_i\rangle$$

Environment-indeuced Eigenselction (Superselection) W. Zurek (1981, 1982)

Thermodynamic Steady State and Eigenselection

$$\begin{array}{c} \text{Claims} \\ \lambda_{\text{B}} \gg |H_{\text{S}}|, \quad \rho_{\text{S}} \rightarrow \frac{1}{Z} \sum_{i} |\pi_{i}\rangle \langle \pi_{i}| \, e^{-\beta H_{\text{S}}} \, |\pi_{i}\rangle \langle \pi_{i}| \end{array} \begin{array}{c} \text{Projective} \\ \text{measurement by} \\ \text{the environment} \end{array} \\ \lambda_{\text{B}} \sim |H_{\text{S}}|, \quad \langle \pi_{i}|\rho_{\text{S}}|\pi_{i}\rangle \approx \frac{1}{Z} \langle \pi_{i}|e^{-\beta H_{\text{S}}}|\pi_{i}\rangle \end{array}$$

$$\left[V_{ ext{ iny SB}},\hat{\Pi}
ight],\quad\hat{\Pi}\left|\pi
ight
angle=\pi_{i}\left|\pi_{i}
ight
angle$$

Open Quantum Systems

Assuming that the whole system is completely isolated, how does the system evolve in time?

Hamiltonian:	$H_{\rm SB} = H_{\rm S} \otimes I_{\rm B} + I_{\rm S} \otimes H_{\rm B} + V_{\rm SB}$
Unitary Evolution Of the Total System	$i\frac{\partial\rho_{\rm SB}}{\partial t} = [H_{\rm SB}, \rho_{\rm SB}]$
State of the System	$\rho_{\rm S}(t) = {\rm tr}_{\rm B}[\rho_{\rm SB}(t)]$

Dynamics of System State

Separable Hamiltonian: $H_{\rm SB} = H_{\rm S} \otimes I_{\rm B} + I_{\rm S} \otimes H_{\rm B} + \lambda_{\rm B} X_{\rm S} \otimes Y_{\rm B}$

$$i\frac{\partial}{\partial t}\rho_{\rm SB} = \begin{bmatrix} H_{\rm SB}, \rho_{\rm SB} \end{bmatrix} \qquad \Longrightarrow \\ {\rm tr}_{\rm B}$$

$$irac{\partial}{\partial t}
ho_{
m S} = [H_{
m S},
ho_{
m S}] + \lambda_{
m B}[X_{
m S},\eta_{
m S}]$$

$$\eta_{
m S}={
m tr}_{
m B}\left[Y_{
m B}
ho_{
m SB}
ight.$$

system-dependent mean displacement of environment If there is no correlation:

$$\rho_{\rm SB} = \rho_s \otimes \rho_{\rm B} \Longrightarrow \eta_{\rm S} = \rho_{\rm S} \left\langle Y_{\rm B} \right\rangle$$

If η_s is a functional of ρ_s , then we have a self-consistent equation of motion for ρ_s (ex. Lindbrad equation).

Born-Markovian Approximation: Quantum Master Equation

- Weak Coupling between S and B: Born Approximation $\rho_{\rm \scriptscriptstyle SB}(t)=\rho_{\rm \scriptscriptstyle S}(t)\otimes\rho_{\rm \scriptscriptstyle G}$
- Short correlation time for B: Markovian Approximation
- Other approximations: Secular, Rotating Wave

$$\frac{\partial \rho_{\rm S}}{\partial t} = -i \Big[\tilde{H}_{\rm S}, \rho_{\rm S} \Big] + D[\rho_{\rm S}]$$
Dissipator

In energy eigenbasis,

- Off-diagonal element vanishes very quickly (Decoherence)
- The transition between eigenstates is incoherent. The dynamics is semi-classical.
- Correlation between S and B is considered only perturbatively.
- Steady state exists: Gibbs state.

Not suited for the present issues.

Model: A Pair of Q-bits

Coupled Q-bits

$$\hat{H}_{S} = \frac{\omega_{0}}{2}\hat{\sigma}_{S_{1}}^{z} + \frac{\omega_{0}}{2}\hat{\sigma}_{S_{2}}^{z} + \lambda_{S}\left(\hat{\sigma}_{S_{1}}^{+}\hat{\sigma}_{S_{2}}^{-} + \hat{\sigma}_{S_{1}}^{-}\hat{\sigma}_{S_{2}}^{+}\right)$$

$$E_{1} = -\omega_{0}, \quad |e_{1}\rangle = |--\rangle$$

$$E_{2} = -\lambda_{s}, \quad |e_{2}\rangle = \frac{1}{\sqrt{2}}\left(|+-\rangle - |-+\rangle\right)$$

$$E_{3} = +\lambda_{s}, \quad |e_{3}\rangle = \frac{1}{\sqrt{2}}\left(|+-\rangle + |-+\rangle\right)$$

$$E_{4} = +\omega_{0}, \quad |e_{4}\rangle = |++\rangle$$

Boson Baths

$$\hat{H}_{B_i} = \sum_k \omega_{B_i}(k) \,\hat{a}_{B_i}^{\dagger}(k) \hat{a}_{B_i}(k), \qquad i = 1, 2$$

System-Bath Coupling

$$\hat{V}_{S_i B_i} = \hat{X}_{S_i} \otimes \hat{Y}_{B_i}$$
$$\hat{X}_{S_i} = \sigma_{S_i}^+ + \sigma_{S_i}^-$$
$$\hat{Y}_{B_i} = \sum_k \epsilon_{B_i}(k) \left[\hat{a}_{B_i}^\dagger(k) + \hat{a}_{B_i} \right]$$

$$B_1 \xrightarrow{S_1} S_2$$

Drude-Lorenzian model

$$g_{B_i}(\omega) = \sum_k |\epsilon_{B_i}(k)| \delta \left(\omega - \omega_{B_i}(k)\right)$$
$$= \frac{2\lambda_{B_i}\gamma_{B_i}\omega}{\omega^2 + \gamma_{B_i}^2}$$

Exact Solution: Step 1

$$H_{\text{total}} = \underbrace{H_{\text{S}} + H_{\text{B}_{1}} + H_{\text{B}_{2}}}_{H_{0}} + \underbrace{X_{\text{S}_{1}} \otimes Y_{\text{B}_{1}}}_{V_{1}} + \underbrace{X_{\text{S}_{2}} \otimes Y_{\text{B}_{2}}}_{V_{2}}$$

Interaction Picture

$$i\frac{\partial}{\partial t}\rho_{\rm SB} = \sum_{j} \left[V_j(t), \rho_{\rm SB} \right]$$

Unitary Evolution of the total system

$$\rho_{\rm SB}(t) = \left\{ \overleftarrow{T} \prod_{j} e^{-i \int_{t_0}^t \hat{V}_j(s) \mathrm{d}s} \right\} \rho_{\rm SB}(t_0) \left\{ \overrightarrow{T} \prod_{\ell} e^{i \int_{t_0}^t \hat{V}_\ell(s) \mathrm{d}s} \right\}$$

Exact Solution: Step 2

$$\rho_{\rm S}(t) = \operatorname{tr}_{\rm B} \rho_{\rm SB}(t)$$

This partial trace can be computed if,

1) Initial state: $ho_{\scriptscriptstyle {\rm SB}}(t_0) =
ho_{\scriptscriptstyle {\rm S}}(t_0) \otimes
ho_{\scriptscriptstyle {\rm B}_1}(t_0) \otimes
ho_{\scriptscriptstyle {\rm B}_2}(t_0)$

2) $\rho_{\mathrm{B}_{j}}(t_{0})$ is a quasi-free state.

$$\rho_{\mathrm{B}_j}(t_0) = \frac{1}{Z_j} e^{-\beta_j \hat{H}_{\mathrm{B}_j}}$$

$$\rho_{\mathrm{S}}(t) = \overleftarrow{\mathfrak{T}} \prod_{j} e^{-\int_{t_0}^t \int_{t_0}^{t_1} \mathrm{d}t_1 \mathrm{d}t_2 \mathcal{K}_j(t_1, t_2)} \rho_{\mathrm{S}}(t_0)$$

 $\begin{aligned} \mathcal{K}_{j}(t_{1}, t_{2}) &= \mathcal{S}_{j}^{-}(t_{1}) \operatorname{Im} C_{j}(t_{1} - t_{2}) \mathcal{S}_{i}^{-}(t_{2}) + i \mathcal{S}_{j}^{-}(t_{1}) \operatorname{Re} C_{j}(t_{1} - t_{2}), \mathcal{S}_{j}^{+}(t_{2}) \\ \mathcal{S}_{j}^{\pm}(t) &= \left[\hat{X}_{S_{j}}(t), \cdot \right]_{\pm} \\ C_{j}(t_{1} - t_{2}) &= \left\langle \hat{Y}_{B_{j}}(t_{1}) \hat{Y}_{B_{j}}(t_{2}) \right\rangle_{t_{0}} \end{aligned}$

Exact Solution: Step 3

$$i\frac{\partial}{\partial t}\rho_{\rm S} = \sum_{j} \left[X_{{\rm S}_{j}}(t), \eta_{j} \right]$$

$$\eta_j(t) = -i\overleftarrow{\mathfrak{T}} \int_{t_0}^t \mathrm{d}s \left\{ \operatorname{Re} C_j(t-s) \mathcal{S}_j^-(s) + i \operatorname{Im} C_j(t-s) \mathcal{S}_j^+(s) \right\}$$
$$\times \prod_j e^{-\int_{t_0}^t \mathrm{d}t_1 \int_{t_0}^{t_1} \mathrm{d}t_2 \mathcal{K}_j(t_1,t_2)} \rho_S(0).$$

Numerically tractable if

$$C_j(t) = \lambda_{\mathrm{B}_j} \left[c_j e^{-\gamma_j t} + 2\Delta_j \delta(t) \right]$$

$$c_{j} = 2/\beta_{j} - \gamma_{j}\Delta_{j} - i\gamma_{j}$$
$$\Delta_{j} = \gamma_{j}\beta_{i}/6$$
$$2\lambda_{\mathrm{P}}\gamma_{i}\omega^{2}$$

$$\mathbf{g}_{\mathbf{B}_j}(\omega) = \frac{2\lambda_{\mathbf{B}_j}\gamma_j\omega}{\omega^2 + \gamma_j}$$

Hierarchical Equation of Motion (HEOM) Tanimura-Kubo(1989)

Auxiliary operators

$$\sigma_{n_{1},n_{2}}(t) = \overleftarrow{\mathfrak{T}} \prod_{j=1}^{2} \left\{ \left[-i \int_{t_{0}}^{t} \mathrm{d}s \, e^{-\gamma_{j}(t-s)} \mathfrak{G}_{j}(s) \right]^{n_{j}} \\ \times e^{-\lambda_{j} \int_{t_{0}}^{t} \int_{t_{0}}^{t_{1}} \mathrm{d}t_{1} \mathrm{d}t_{2} \mathfrak{S}_{j}^{-}(t_{1}) e^{-\gamma_{j}(t_{1}-t_{2})} \mathfrak{G}_{j}(t_{2})} \\ \times e^{-\lambda_{B_{j}} \Delta_{i} \int_{t_{0}}^{t} \mathrm{d}t_{1} \mathfrak{S}_{j}^{-}(t_{1}) \mathfrak{S}_{j}^{-}(t_{1})} \right\} \rho_{S}(t_{0})$$

$$\mathcal{G}_i(t) = \left(2/\beta_i - \gamma_{B_i} \Delta_i\right) \mathcal{S}^-(t) - i\gamma_{B_i} \mathcal{S}^+(t).$$

$$\sigma_{1,0}$$
 $\sigma_{0,1}$ $\sigma_{0,2}$ $\sigma_{1,1}$ $\sigma_{1,1}$ $\sigma_{1,2}$ $\sigma_{1,1}$ $\sigma_{1,2}$ $\sigma_{1,1}$ $\sigma_{1,2}$ σ_{1

Cut-off at depth=40, 861 auxiliary ops.

8610 couped ODEs

Equation of Motion

 $\rho_{\rm s}(t) = \sigma_{0,0}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma_{n_1,n_2}(t) = -(\gamma_{B_1}n_1 + \gamma_{B_2}n_2)\sigma_{n_1,n_2}(t) - \left[\lambda_{B_1}\Delta_1 S_1^-(t)S_1^-(t) + \lambda_{B_2}\Delta_2 S_2^-(t)S_2^-t)\right]\sigma_{n_1,n_2}(t) - i\lambda_{B_1}S_1^-\sigma_{n_1+1,n_2}(t) - i\lambda_{B_2}S_2^-\sigma_{n_1,n_2+1}(t) - in_1\lambda_{B_1}\mathcal{G}_1(t)\sigma_{n_1-1,n_2}(t) - in_2\lambda_{B_2}\mathcal{G}_2(t)\sigma_{n_1,n_2-1}(t)$$

 $\eta_1(t) = \lambda_{\rm B_1} \left[\sigma_{1,0}(t) - i\Delta_1 S_1^-(t) \sigma_{0,0}(t) \right]$

 $\eta_2(t) = \lambda_{\rm B_2} \left[\sigma_{0,1}(t) - i\Delta_2 S_2^-(t) \sigma_{0,0}(t) \right]$

Choice of Basis Sets

Eigen Basis

$$|e_1\rangle = |--\rangle$$

 $|e_2\rangle = (|-+\rangle - |+-\rangle)/\sqrt{2}$
 $|e_3\rangle = (|-+\rangle + |+-\rangle)/\sqrt{2}$
 $|e_4\rangle = |++\rangle$

More Basis Sets

Bell Basis

$$|b_1\rangle = |\Phi_+\rangle = (|++\rangle + |--\rangle) / \sqrt{2}$$

$$|b_2\rangle = |\Phi_-\rangle = (|++\rangle - |--\rangle) / \sqrt{2}$$

$$|b_3\rangle = |\Psi_+\rangle = (|+-\rangle + |-+\rangle) / \sqrt{2}$$

$$|b_4\rangle = |\Psi_-\rangle = (|+-\rangle - |-+\rangle) / \sqrt{2}$$

Pointer Basis

$\sigma^{\scriptscriptstyle \mathrm{A}}_x \otimes I^{\scriptscriptstyle \mathrm{B}} \ket{\pi_i} = \lambda_i \ket{\pi_i}$	$ \pi_1 angle$ =	_	$\left(\left \Phi_{+}\right\rangle+\left \Psi_{+}\right\rangle\right)/\sqrt{2}=\left(\left ++\right\rangle+\left \right\rangle+\left +-\right\rangle+\left -+\right\rangle\right)/2$
$I^{\scriptscriptstyle \mathrm{A}} \otimes \sigma_x^{\scriptscriptstyle \mathrm{B}} \ket{\pi_i} = \eta_i \ket{\pi_i}$	$ \pi_2 angle$ =	_	$\left(\left \Phi_{+}\right\rangle - \left \Psi_{+}\right\rangle\right)/\sqrt{2} = \left(\left ++\right\rangle + \left \right\rangle - \left +-\right\rangle - \left -+\right\rangle\right)/2$
$\lambda = \{1, -1, -1, 1\}$	$ \pi_3 angle$ =	_	$\left(\left \Phi_{-}\right\rangle+\left \Psi_{-}\right\rangle\right)/\sqrt{2}=\left(\left ++\right\rangle-\left \right\rangle+\left +-\right\rangle-\left -+\right\rangle\right)/2$
$\eta = \{1, -1, 1, -1\}$	$ \pi_4 angle$ =	_	$\left(\left \Phi_{-}\right\rangle-\left \Psi_{-}\right\rangle\right)/\sqrt{2}=\left(\left ++\right\rangle-\left \right\rangle-\left +-\right\rangle+\left -+\right\rangle\right)/2$

Thermodynamic Steady State and Eigenselection

$$\begin{split} & \lambda_{\rm B} \gg |H_{\rm S}|, \quad \rho_{\rm S} \quad \rightarrow \quad \frac{1}{Z} \sum_{i} |\pi_{i}\rangle \langle \pi_{i}| \, e^{-\beta H_{\rm S}} \, |\pi_{i}\rangle \langle \pi_{i}| \\ & \lambda_{\rm B} \sim |H_{\rm S}|, \quad \langle \pi_{i}|\rho_{\rm S}|\pi_{i}\rangle \approx \frac{1}{Z} \, \langle \pi_{i}|e^{-\beta H_{\rm S}}|\pi_{i}\rangle \end{split}$$

$$\left[V_{\rm SB},\hat{\Pi}\right] = 0, \quad \hat{\Pi} \left|\pi\right\rangle = \pi_i \left|\pi_i\right\rangle$$

Steady State: Diagonal Elements $T_{\mathrm{A}}=T_{\mathrm{B}}=1.5, \lambda_{\mathrm{S}}=1.55, \omega_{0}=1$ eigen atom 0.5 Gibbs 0.5 0.4 $\boldsymbol{\rho}_{22}$ Pointer $\boldsymbol{\rho}_{11}$ 0.4 0.3 $\boldsymbol{\rho}_{11}$ $\rho_{\rm ii}$ ^{:=} 0.3 ρ_{22},ρ_{33} 0.2 $\boldsymbol{\rho}_{44}$ 0.2 $\boldsymbol{\rho}_{44}$ 0.1 0.1 $\boldsymbol{\rho}_{33}$ 0^{\perp}_0 0^{\perp}_0 $\frac{1}{\lambda_{B}}$ $\frac{2}{\lambda_{\rm B}}$ 3 3 4 1 1 4 0.5 Bell pointer 0.5 $\boldsymbol{\rho}_{44}$ 0.4 0.4 ρ_{33}, ρ_{44} $\boldsymbol{\rho}_{22}$ 0.3 0.3 $\rho_{\rm ii}$ $\rho_{\rm ii}$ $\boldsymbol{\rho}_{11}$ 0.2 0.2 ρ_{11},ρ_{22} 0.1 0.1 $\boldsymbol{\rho}_{33}$ $0_0^{\scriptscriptstyle ackslash}$ 0^{\lfloor}_{0} $\frac{1}{\lambda_{B}}$ $\frac{2}{\lambda_{B}}$ 3 3 1 4 4 1

Steady State: Off-Diagonal Elements

Non-Equilibrium Steady State and Heat

$$J_j = -i \operatorname{tr}_S \left\{ \left[\hat{X}_{S_j}, \eta_j \right] \hat{H}_S \right\}$$

Does heat flow under the observation by the environment?

Heat by QME and HEOM $T_1 = 2, T_2 = 1$

QME vs HEOM

Entanglement between Q-bits

Concurrence $C(\rho) = \max(0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4)$ $\lambda_i = \text{eigenvalue of } R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}$ in decreasing order $\tilde{\rho} = (\sigma_y \otimes \sigma_y)\rho^*(\sigma_y \otimes \sigma_y)$

Heat conduction dies off at strong coupling

Disappearance of Heat ---> Quantum Zeno effect Rebentrost *et al.* (2009), Kato-Tanimura (2015)

Non-Equilibrium Steady State: Diagonal Elements

Non-Equilibrium Steady State: Off-Diagonal Elements

Decoherence strength: Flemming et al. (2012)

Autonomous Quantum Heat Engine

Heat at stalled force

$$T_A = 5, T_B = 1, \lambda_S = 0.5, \lambda_B = 0.05, \hbar\omega = 1$$

Conclusions

Equilibrium

- Continuous measurement by the environment projects Gibbs state to pointer states.
- Probability distribution of pointer states is insensitive to the coupling strength.

Non-Equilibrium

• Continuous measurement by the environments kills heat conduction.

About Born-Markovian quantum master equation

• Decoherence predicted by Born-Markovian quantum master equation predicts the Gibbs state for equilibrium situation but exhibits unrealistic results for non-equilibrium situation.

Numerical Method

• Hierarchical Equation of Motion (HEOM) provides exact numerical solution for open quantum systems.

